Show commands:
SageMath
E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 6400.x
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
6400.x1 | 6400f2 | \([0, -1, 0, -333, -1963]\) | \(8000\) | \(512000000\) | \([2]\) | \(2304\) | \(0.40075\) | \(-8\) | |
6400.x2 | 6400f1 | \([0, -1, 0, -83, 287]\) | \(8000\) | \(8000000\) | \([2]\) | \(1152\) | \(0.054173\) | \(\Gamma_0(N)\)-optimal | \(-8\) |
Rank
sage: E.rank()
The elliptic curves in class 6400.x have rank \(1\).
Complex multiplication
Each elliptic curve in class 6400.x has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-2}) \).Modular form 6400.2.a.x
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.