Properties

Label 6400.x
Number of curves 22
Conductor 64006400
CM Q(2)\Q(\sqrt{-2})
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Elliptic curves in class 6400.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
6400.x1 6400f2 [0,1,0,333,1963][0, -1, 0, -333, -1963] 80008000 512000000512000000 [2][2] 23042304 0.400750.40075   8-8
6400.x2 6400f1 [0,1,0,83,287][0, -1, 0, -83, 287] 80008000 80000008000000 [2][2] 11521152 0.0541730.054173 Γ0(N)\Gamma_0(N)-optimal 8-8

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6400.x have rank 11.

Complex multiplication

Each elliptic curve in class 6400.x has complex multiplication by an order in the imaginary quadratic field Q(2)\Q(\sqrt{-2}) .

Modular form 6400.2.a.x

Copy content sage:E.q_eigenform(10)
 
q+2q3+q96q11+6q172q19+O(q20)q + 2 q^{3} + q^{9} - 6 q^{11} + 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.