Properties

Label 6400.x
Number of curves $2$
Conductor $6400$
CM \(\Q(\sqrt{-2}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 6400.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
6400.x1 6400f2 \([0, -1, 0, -333, -1963]\) \(8000\) \(512000000\) \([2]\) \(2304\) \(0.40075\)   \(-8\)
6400.x2 6400f1 \([0, -1, 0, -83, 287]\) \(8000\) \(8000000\) \([2]\) \(1152\) \(0.054173\) \(\Gamma_0(N)\)-optimal \(-8\)

Rank

sage: E.rank()
 

The elliptic curves in class 6400.x have rank \(1\).

Complex multiplication

Each elliptic curve in class 6400.x has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-2}) \).

Modular form 6400.2.a.x

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{9} - 6 q^{11} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.