Properties

Label 6498.p
Number of curves 44
Conductor 64986498
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 6498.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6498.p1 6498w3 [1,1,1,284456516,1846525107769][1, -1, 1, -284456516, -1846525107769] 74220219816682217473/1641674220219816682217473/16416 563010478039584563010478039584 [2][2] 691200691200 3.12303.1230  
6498.p2 6498w2 [1,1,1,17778596,28848405049][1, -1, 1, -17778596, -28848405049] 18120364883707393/26948505618120364883707393/269485056 92423800074978109449242380007497810944 [2,2][2, 2] 345600345600 2.77642.7764  
6498.p3 6498w4 [1,1,1,17258756,30615029305][1, -1, 1, -17258756, -30615029305] 16576888679672833/2216253521952-16576888679672833/2216253521952 76009622006037231510048-76009622006037231510048 [2][2] 691200691200 3.12303.1230  
6498.p4 6498w1 [1,1,1,1143716,422722105][1, -1, 1, -1143716, -422722105] 4824238966273/5379194884824238966273/537919488 1844872734440108851218448727344401088512 [4][4] 172800172800 2.42982.4298 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 6498.p have rank 00.

Complex multiplication

The elliptic curves in class 6498.p do not have complex multiplication.

Modular form 6498.2.a.p

sage: E.q_eigenform(10)
 
q+q2+q42q5+q82q10+4q112q13+q16+6q17+O(q20)q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 2 q^{10} + 4 q^{11} - 2 q^{13} + q^{16} + 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.