E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 6498.p
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
6498.p1 |
6498w3 |
[1,−1,1,−284456516,−1846525107769] |
74220219816682217473/16416 |
563010478039584 |
[2] |
691200 |
3.1230
|
|
6498.p2 |
6498w2 |
[1,−1,1,−17778596,−28848405049] |
18120364883707393/269485056 |
9242380007497810944 |
[2,2] |
345600 |
2.7764
|
|
6498.p3 |
6498w4 |
[1,−1,1,−17258756,−30615029305] |
−16576888679672833/2216253521952 |
−76009622006037231510048 |
[2] |
691200 |
3.1230
|
|
6498.p4 |
6498w1 |
[1,−1,1,−1143716,−422722105] |
4824238966273/537919488 |
18448727344401088512 |
[4] |
172800 |
2.4298
|
Γ0(N)-optimal |
The elliptic curves in class 6498.p have
rank 0.
The elliptic curves in class 6498.p do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.