Properties

Label 6498.p
Number of curves $4$
Conductor $6498$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 6498.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6498.p1 6498w3 \([1, -1, 1, -284456516, -1846525107769]\) \(74220219816682217473/16416\) \(563010478039584\) \([2]\) \(691200\) \(3.1230\)  
6498.p2 6498w2 \([1, -1, 1, -17778596, -28848405049]\) \(18120364883707393/269485056\) \(9242380007497810944\) \([2, 2]\) \(345600\) \(2.7764\)  
6498.p3 6498w4 \([1, -1, 1, -17258756, -30615029305]\) \(-16576888679672833/2216253521952\) \(-76009622006037231510048\) \([2]\) \(691200\) \(3.1230\)  
6498.p4 6498w1 \([1, -1, 1, -1143716, -422722105]\) \(4824238966273/537919488\) \(18448727344401088512\) \([4]\) \(172800\) \(2.4298\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 6498.p have rank \(0\).

Complex multiplication

The elliptic curves in class 6498.p do not have complex multiplication.

Modular form 6498.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 2 q^{10} + 4 q^{11} - 2 q^{13} + q^{16} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.