Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 650.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
650.b1 | 650g1 | \([1, 0, 1, -26, 48]\) | \(-2941225/52\) | \(-32500\) | \([3]\) | \(72\) | \(-0.33716\) | \(\Gamma_0(N)\)-optimal |
650.b2 | 650g2 | \([1, 0, 1, 99, 248]\) | \(174196775/140608\) | \(-87880000\) | \([]\) | \(216\) | \(0.21214\) |
Rank
sage: E.rank()
The elliptic curves in class 650.b have rank \(1\).
Complex multiplication
The elliptic curves in class 650.b do not have complex multiplication.Modular form 650.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.