Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 650.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
650.c1 | 650e1 | \([1, 0, 1, -21026, -1175052]\) | \(65787589563409/10400000\) | \(162500000000\) | \([2]\) | \(1920\) | \(1.1617\) | \(\Gamma_0(N)\)-optimal |
650.c2 | 650e2 | \([1, 0, 1, -19026, -1407052]\) | \(-48743122863889/26406250000\) | \(-412597656250000\) | \([2]\) | \(3840\) | \(1.5082\) |
Rank
sage: E.rank()
The elliptic curves in class 650.c have rank \(0\).
Complex multiplication
The elliptic curves in class 650.c do not have complex multiplication.Modular form 650.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.