Properties

Label 650.c
Number of curves $2$
Conductor $650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 650.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
650.c1 650e1 \([1, 0, 1, -21026, -1175052]\) \(65787589563409/10400000\) \(162500000000\) \([2]\) \(1920\) \(1.1617\) \(\Gamma_0(N)\)-optimal
650.c2 650e2 \([1, 0, 1, -19026, -1407052]\) \(-48743122863889/26406250000\) \(-412597656250000\) \([2]\) \(3840\) \(1.5082\)  

Rank

sage: E.rank()
 

The elliptic curves in class 650.c have rank \(0\).

Complex multiplication

The elliptic curves in class 650.c do not have complex multiplication.

Modular form 650.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} + 4 q^{7} - q^{8} + q^{9} - 2 q^{11} - 2 q^{12} + q^{13} - 4 q^{14} + q^{16} - 2 q^{17} - q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.