sage:E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 650.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
650.c1 |
650e1 |
[1,0,1,−21026,−1175052] |
65787589563409/10400000 |
162500000000 |
[2] |
1920 |
1.1617
|
Γ0(N)-optimal |
650.c2 |
650e2 |
[1,0,1,−19026,−1407052] |
−48743122863889/26406250000 |
−412597656250000 |
[2] |
3840 |
1.5082
|
|
sage:E.rank()
The elliptic curves in class 650.c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
5 | 1 |
13 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1+2T+11T2 |
1.11.c
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1−6T+19T2 |
1.19.ag
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 650.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.