Show commands:
SageMath
E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 650.h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
650.h1 | 650l2 | \([1, 0, 0, -283263, -58050983]\) | \(-6434774386429585/140608\) | \(-54925000000\) | \([]\) | \(5400\) | \(1.5871\) | |
650.h2 | 650l1 | \([1, 0, 0, -3263, -90983]\) | \(-9836106385/3407872\) | \(-1331200000000\) | \([3]\) | \(1800\) | \(1.0378\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 650.h have rank \(0\).
Complex multiplication
The elliptic curves in class 650.h do not have complex multiplication.Modular form 650.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.