Properties

Label 65340.bl
Number of curves $2$
Conductor $65340$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bl1")
 
E.isogeny_class()
 

Elliptic curves in class 65340.bl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
65340.bl1 65340bl1 \([0, 0, 0, -8712, 314116]\) \(-5971968/25\) \(-306125740800\) \([]\) \(77760\) \(1.0589\) \(\Gamma_0(N)\)-optimal
65340.bl2 65340bl2 \([0, 0, 0, 20328, 1655764]\) \(8429568/15625\) \(-1721957292000000\) \([]\) \(233280\) \(1.6082\)  

Rank

sage: E.rank()
 

The elliptic curves in class 65340.bl have rank \(1\).

Complex multiplication

The elliptic curves in class 65340.bl do not have complex multiplication.

Modular form 65340.2.a.bl

sage: E.q_eigenform(10)
 
\(q + q^{5} + q^{7} + q^{13} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.