Properties

Label 6552.e
Number of curves 44
Conductor 65526552
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 6552.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6552.e1 6552h4 [0,0,0,122331,16468454][0, 0, 0, -122331, 16468454] 271210066309732/51597271210066309732/51597 3851695411238516954112 [2][2] 1638416384 1.42331.4233  
6552.e2 6552h3 [0,0,0,14691,285010][0, 0, 0, -14691, -285010] 469732169092/224827239469732169092/224827239 167832634604544167832634604544 [2][2] 1638416384 1.42331.4233  
6552.e3 6552h2 [0,0,0,7671,255530][0, 0, 0, -7671, 255530] 267492843088/3651921267492843088/3651921 681536104704681536104704 [2,2][2, 2] 81928192 1.07681.0768  
6552.e4 6552h1 [0,0,0,66,10649][0, 0, 0, -66, 10649] 2725888/4198467-2725888/4198467 48970919088-48970919088 [4][4] 40964096 0.730190.73019 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 6552.e have rank 11.

Complex multiplication

The elliptic curves in class 6552.e do not have complex multiplication.

Modular form 6552.2.a.e

sage: E.q_eigenform(10)
 
q2q5q7+q13+6q174q19+O(q20)q - 2 q^{5} - q^{7} + q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.