E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 6552.e
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
6552.e1 |
6552h4 |
[0,0,0,−122331,16468454] |
271210066309732/51597 |
38516954112 |
[2] |
16384 |
1.4233
|
|
6552.e2 |
6552h3 |
[0,0,0,−14691,−285010] |
469732169092/224827239 |
167832634604544 |
[2] |
16384 |
1.4233
|
|
6552.e3 |
6552h2 |
[0,0,0,−7671,255530] |
267492843088/3651921 |
681536104704 |
[2,2] |
8192 |
1.0768
|
|
6552.e4 |
6552h1 |
[0,0,0,−66,10649] |
−2725888/4198467 |
−48970919088 |
[4] |
4096 |
0.73019
|
Γ0(N)-optimal |
The elliptic curves in class 6552.e have
rank 1.
The elliptic curves in class 6552.e do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.