Properties

Label 6552h2
Conductor 65526552
Discriminant 681536104704681536104704
j-invariant 2674928430883651921 \frac{267492843088}{3651921}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x37671x+255530y^2=x^3-7671x+255530 Copy content Toggle raw display (homogenize, simplify)
y2z=x37671xz2+255530z3y^2z=x^3-7671xz^2+255530z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x37671x+255530y^2=x^3-7671x+255530 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -7671, 255530])
 
gp: E = ellinit([0, 0, 0, -7671, 255530])
 
magma: E := EllipticCurve([0, 0, 0, -7671, 255530]);
 
oscar: E = elliptic_curve([0, 0, 0, -7671, 255530])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(43,72)(43, 72)1.90370843663509705904631468861.9037084366350970590463146886\infty
(46,0)(46, 0)0022
(55,0)(55, 0)0022

Integral points

(101,0) \left(-101, 0\right) , (62,±702)(-62,\pm 702), (43,±72)(43,\pm 72), (46,0) \left(46, 0\right) , (55,0) \left(55, 0\right) , (487,±10584)(487,\pm 10584) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  6552 6552  = 23327132^{3} \cdot 3^{2} \cdot 7 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  681536104704681536104704 = 2838741322^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2674928430883651921 \frac{267492843088}{3651921}  = 243274132255732^{4} \cdot 3^{-2} \cdot 7^{-4} \cdot 13^{-2} \cdot 2557^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.07676548245444693630971538031.0767654824544469363097153803
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0653612177470952176672713475330.065361217747095217667271347533
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.90862034938327720.9086203493832772
Szpiro ratio: σm\sigma_{m} ≈ 4.3754307484332234.375430748433223

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.90370843663509705904631468861.9037084366350970590463146886
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.909385348537655810283928158290.90938534853765581028392815829
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2\cdot2^{2}\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.46240912032696718019600529043.4624091203269671801960052904
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.462409120L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.9093851.90370832423.462409120\displaystyle 3.462409120 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.909385 \cdot 1.903708 \cdot 32}{4^2} \approx 3.462409120

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   6552.2.a.e

q2q5q7+q13+6q174q19+O(q20) q - 2 q^{5} - q^{7} + q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 8192
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I1I_{1}^{*} additive 1 3 8 0
33 44 I2I_{2}^{*} additive -1 2 8 2
77 22 I4I_{4} nonsplit multiplicative 1 1 4 4
1313 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 4.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[153, 154, 106, 1], [79, 2, 0, 1], [145, 2, 0, 1], [153, 4, 152, 5], [1, 4, 0, 1], [1, 0, 4, 1]]
 
GL(2,Integers(156)).subgroup(gens)
 
Gens := [[153, 154, 106, 1], [79, 2, 0, 1], [145, 2, 0, 1], [153, 4, 152, 5], [1, 4, 0, 1], [1, 0, 4, 1]];
 
sub<GL(2,Integers(156))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 156=22313 156 = 2^{2} \cdot 3 \cdot 13 , index 4848, genus 00, and generators

(1531541061),(79201),(145201),(15341525),(1401),(1041)\left(\begin{array}{rr} 153 & 154 \\ 106 & 1 \end{array}\right),\left(\begin{array}{rr} 79 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 145 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 153 & 4 \\ 152 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[156])K:=\Q(E[156]) is a degree-25159682515968 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/156Z)\GL_2(\Z/156\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 9=32 9 = 3^{2}
33 additive 88 728=23713 728 = 2^{3} \cdot 7 \cdot 13
77 nonsplit multiplicative 88 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
1313 split multiplicative 1414 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 6552h consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 2184h2, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(39)\Q(\sqrt{39}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(ζ12)\Q(\zeta_{12}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(3,13)\Q(\sqrt{-3}, \sqrt{13}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.592240896.1 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.4.14412774445056.25 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.12439396983057408.12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord nonsplit ss split ord ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) - - 3 1 1,1 2 1 1 1,1 1 1 1 1 1 1
μ\mu-invariant(s) - - 0 0 0,0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.