Properties

Label 6552v2
Conductor 65526552
Discriminant 5563560038455635600384
j-invariant 15309101274529 \frac{153091012}{74529}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x31011x4930y^2=x^3-1011x-4930 Copy content Toggle raw display (homogenize, simplify)
y2z=x31011xz24930z3y^2z=x^3-1011xz^2-4930z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31011x4930y^2=x^3-1011x-4930 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -1011, -4930])
 
gp: E = ellinit([0, 0, 0, -1011, -4930])
 
magma: E := EllipticCurve([0, 0, 0, -1011, -4930]);
 
oscar: E = elliptic_curve([0, 0, 0, -1011, -4930])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(5,0)(-5, 0)0022
(34,0)(34, 0)0022

Integral points

(29,0) \left(-29, 0\right) , (5,0) \left(-5, 0\right) , (34,0) \left(34, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  6552 6552  = 23327132^{3} \cdot 3^{2} \cdot 7 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  5563560038455635600384 = 21038721322^{10} \cdot 3^{8} \cdot 7^{2} \cdot 13^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  15309101274529 \frac{153091012}{74529}  = 22327213233732^{2} \cdot 3^{-2} \cdot 7^{-2} \cdot 13^{-2} \cdot 337^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.755282714286371173879402207290.75528271428637117387940220729
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.37164608051430476299924717905-0.37164608051430476299924717905
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.87596228667659430.8759622866765943
Szpiro ratio: σm\sigma_{m} ≈ 3.68359536793067173.6835953679306717

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.889242535429901086921681325510.88924253542990108692168132551
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2\cdot2^{2}\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.77848507085980217384336265101.7784850708598021738433626510
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.778485071L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8892431.00000032421.778485071\displaystyle 1.778485071 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.889243 \cdot 1.000000 \cdot 32}{4^2} \approx 1.778485071

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   6552.2.a.h

q2q5+q7+4q11q132q17+4q19+O(q20) q - 2 q^{5} + q^{7} + 4 q^{11} - q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5120
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII^{*} additive -1 3 10 0
33 44 I2I_{2}^{*} additive -1 2 8 2
77 22 I2I_{2} split multiplicative -1 1 2 2
1313 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [1683, 2, 334, 2183], [1, 4, 0, 1], [549, 4, 1094, 3], [2181, 4, 2180, 5], [1093, 4, 2, 9], [727, 2182, 0, 2183], [1249, 2, 0, 1]]
 
GL(2,Integers(2184)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [1683, 2, 334, 2183], [1, 4, 0, 1], [549, 4, 1094, 3], [2181, 4, 2180, 5], [1093, 4, 2, 9], [727, 2182, 0, 2183], [1249, 2, 0, 1]];
 
sub<GL(2,Integers(2184))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2184=233713 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 , index 4848, genus 00, and generators

(1041),(168323342183),(1401),(549410943),(2181421805),(1093429),(727218202183),(1249201)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1683 & 2 \\ 334 & 2183 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 549 & 4 \\ 1094 & 3 \end{array}\right),\left(\begin{array}{rr} 2181 & 4 \\ 2180 & 5 \end{array}\right),\left(\begin{array}{rr} 1093 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 727 & 2182 \\ 0 & 2183 \end{array}\right),\left(\begin{array}{rr} 1249 & 2 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2184])K:=\Q(E[2184]) is a degree-8115506380881155063808 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2184Z)\GL_2(\Z/2184\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 9=32 9 = 3^{2}
33 additive 88 728=23713 728 = 2^{3} \cdot 7 \cdot 13
77 split multiplicative 88 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
1313 nonsplit multiplicative 1414 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 6552v consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 2184b2, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(6,7)\Q(\sqrt{-6}, \sqrt{-7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(7,39)\Q(\sqrt{7}, \sqrt{39}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,26)\Q(\sqrt{6}, \sqrt{-26}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.12439396983057408.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 16.0.132513778481397717569346994176.23 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 7 13
Reduction type add add split nonsplit
λ\lambda-invariant(s) - - 1 0
μ\mu-invariant(s) - - 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.