E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 66424.i
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
66424.i1 |
66424h4 |
[0,0,0,−220571,−35433594] |
24634706148/2997383 |
144398872503729152 |
[2] |
472320 |
2.0230
|
|
66424.i2 |
66424h2 |
[0,0,0,−54511,4321170] |
1487354832/190969 |
2299982041264384 |
[2,2] |
236160 |
1.6764
|
|
66424.i3 |
66424h1 |
[0,0,0,−52706,4657261] |
21511084032/437 |
328944799952 |
[4] |
118080 |
1.3299
|
Γ0(N)-optimal |
66424.i4 |
66424h3 |
[0,0,0,82669,22566110] |
1296970812/5316979 |
−256145368385022976 |
[2] |
472320 |
2.0230
|
|
The elliptic curves in class 66424.i have
rank 1.
The elliptic curves in class 66424.i do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.