Properties

Label 66424.i
Number of curves 44
Conductor 6642466424
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 66424.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66424.i1 66424h4 [0,0,0,220571,35433594][0, 0, 0, -220571, -35433594] 24634706148/299738324634706148/2997383 144398872503729152144398872503729152 [2][2] 472320472320 2.02302.0230  
66424.i2 66424h2 [0,0,0,54511,4321170][0, 0, 0, -54511, 4321170] 1487354832/1909691487354832/190969 22999820412643842299982041264384 [2,2][2, 2] 236160236160 1.67641.6764  
66424.i3 66424h1 [0,0,0,52706,4657261][0, 0, 0, -52706, 4657261] 21511084032/43721511084032/437 328944799952328944799952 [4][4] 118080118080 1.32991.3299 Γ0(N)\Gamma_0(N)-optimal
66424.i4 66424h3 [0,0,0,82669,22566110][0, 0, 0, 82669, 22566110] 1296970812/53169791296970812/5316979 256145368385022976-256145368385022976 [2][2] 472320472320 2.02302.0230  

Rank

sage: E.rank()
 

The elliptic curves in class 66424.i have rank 11.

Complex multiplication

The elliptic curves in class 66424.i do not have complex multiplication.

Modular form 66424.2.a.i

sage: E.q_eigenform(10)
 
q2q53q94q11+2q136q17+O(q20)q - 2 q^{5} - 3 q^{9} - 4 q^{11} + 2 q^{13} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.