Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+115x+561\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+115xz^2+561z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+149013x+25726950\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{10}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(4, 31)$ | $0$ | $10$ |
Integral points
\( \left(-2, 19\right) \), \( \left(-2, -17\right) \), \( \left(4, 31\right) \), \( \left(4, -35\right) \), \( \left(16, 73\right) \), \( \left(16, -89\right) \), \( \left(70, 559\right) \), \( \left(70, -629\right) \)
Invariants
Conductor: | $N$ | = | \( 66 \) | = | $2 \cdot 3 \cdot 11$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-228637728$ | = | $-1 \cdot 2^{5} \cdot 3^{10} \cdot 11^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{168105213359}{228637728} \) | = | $2^{-5} \cdot 3^{-10} \cdot 11^{-2} \cdot 5519^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.28970790045947012552351204821$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.28970790045947012552351204821$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.1002106061618209$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.241118372285253$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $1.1916148156124852131560253128$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 100 $ = $ 5\cdot( 2 \cdot 5 )\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $10$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $1.1916148156124852131560253128 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 1.191614816 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.191615 \cdot 1.000000 \cdot 100}{10^2} \approx 1.191614816$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 40 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$3$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
$11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.5 |
$5$ | 5B.1.1 | 5.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 881 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1301 & 20 \\ 1300 & 21 \end{array}\right),\left(\begin{array}{rr} 1201 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 1080 & 971 \end{array}\right),\left(\begin{array}{rr} 531 & 20 \\ 1300 & 1187 \end{array}\right),\left(\begin{array}{rr} 666 & 5 \\ 385 & 46 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 575 & 1136 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$1622016000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 22 = 2 \cdot 11 \) |
$5$ | good | $2$ | \( 11 \) |
$11$ | split multiplicative | $12$ | \( 6 = 2 \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 66c
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{10}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/10\Z\) | 2.0.8.1-2178.5-c6 |
$4$ | 4.2.34848.2 | \(\Z/20\Z\) | not in database |
$8$ | 8.0.4567597056.5 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$8$ | 8.0.77720518656.13 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$8$ | 8.2.41497747632.1 | \(\Z/30\Z\) | not in database |
$16$ | deg 16 | \(\Z/40\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/30\Z\) | not in database |
$20$ | 20.0.1402274470934209014892578125.2 | \(\Z/5\Z \oplus \Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 |
---|---|---|---|---|
Reduction type | split | split | ord | split |
$\lambda$-invariant(s) | 1 | 1 | 2 | 1 |
$\mu$-invariant(s) | 1 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Additional information
This curve was used by Everett Howe [MR:3312971] to construct a genus 2 curve over $\mathbb{Q}$ whose Jacobian has a rational 70-torsion point; this is the largest known torsion subgroup for any abelian surface over $\mathbb{Q}$.