Properties

Label 6720bi
Number of curves 44
Conductor 67206720
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bi1")
 
E.isogeny_class()
 

Elliptic curves in class 6720bi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6720.c4 6720bi1 [0,1,0,1600156,768989294][0, -1, 0, -1600156, -768989294] 7079962908642659949376/1000859669904543757079962908642659949376/100085966990454375 64055018873890800006405501887389080000 [2][2] 215040215040 2.41342.4134 Γ0(N)\Gamma_0(N)-optimal
6720.c2 6720bi2 [0,1,0,25515001,49598319815][0, -1, 0, -25515001, -49598319815] 448487713888272974160064/91549016015625448487713888272974160064/91549016015625 374984769600000000374984769600000000 [2,2][2, 2] 430080430080 2.76002.7600  
6720.c1 6720bi3 [0,1,0,408240001,3174701034815][0, -1, 0, -408240001, -3174701034815] 229625675762164624948320008/9568125229625675762164624948320008/9568125 313528320000313528320000 [2][2] 860160860160 3.10663.1066  
6720.c3 6720bi4 [0,1,0,25427521,49955395679][0, -1, 0, -25427521, -49955395679] 55486311952875723077768/801237030029296875-55486311952875723077768/801237030029296875 26254935000000000000000-26254935000000000000000 [2][2] 860160860160 3.10663.1066  

Rank

sage: E.rank()
 

The elliptic curves in class 6720bi have rank 00.

Complex multiplication

The elliptic curves in class 6720bi do not have complex multiplication.

Modular form 6720.2.a.bi

sage: E.q_eigenform(10)
 
qq3q5q7+q94q11+6q13+q15+6q174q19+O(q20)q - q^{3} - q^{5} - q^{7} + q^{9} - 4 q^{11} + 6 q^{13} + q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.