E = EllipticCurve("bi1")
E.isogeny_class()
Elliptic curves in class 6720bi
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
6720.c4 |
6720bi1 |
[0,−1,0,−1600156,−768989294] |
7079962908642659949376/100085966990454375 |
6405501887389080000 |
[2] |
215040 |
2.4134
|
Γ0(N)-optimal |
6720.c2 |
6720bi2 |
[0,−1,0,−25515001,−49598319815] |
448487713888272974160064/91549016015625 |
374984769600000000 |
[2,2] |
430080 |
2.7600
|
|
6720.c1 |
6720bi3 |
[0,−1,0,−408240001,−3174701034815] |
229625675762164624948320008/9568125 |
313528320000 |
[2] |
860160 |
3.1066
|
|
6720.c3 |
6720bi4 |
[0,−1,0,−25427521,−49955395679] |
−55486311952875723077768/801237030029296875 |
−26254935000000000000000 |
[2] |
860160 |
3.1066
|
|
The elliptic curves in class 6720bi have
rank 0.
The elliptic curves in class 6720bi do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.