E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 6720j
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
6720.w3 |
6720j1 |
[0,−1,0,−285,−1683] |
2508888064/118125 |
120960000 |
[2] |
3072 |
0.31171
|
Γ0(N)-optimal |
6720.w2 |
6720j2 |
[0,−1,0,−785,6417] |
3269383504/893025 |
14631321600 |
[2,2] |
6144 |
0.65828
|
|
6720.w1 |
6720j3 |
[0,−1,0,−11585,483777] |
2624033547076/324135 |
21242511360 |
[2] |
12288 |
1.0049
|
|
6720.w4 |
6720j4 |
[0,−1,0,2015,39457] |
13799183324/18600435 |
−1218998108160 |
[2] |
12288 |
1.0049
|
|
The elliptic curves in class 6720j have
rank 0.
The elliptic curves in class 6720j do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.