Properties

Label 6720j
Number of curves $4$
Conductor $6720$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 6720j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6720.w3 6720j1 \([0, -1, 0, -285, -1683]\) \(2508888064/118125\) \(120960000\) \([2]\) \(3072\) \(0.31171\) \(\Gamma_0(N)\)-optimal
6720.w2 6720j2 \([0, -1, 0, -785, 6417]\) \(3269383504/893025\) \(14631321600\) \([2, 2]\) \(6144\) \(0.65828\)  
6720.w1 6720j3 \([0, -1, 0, -11585, 483777]\) \(2624033547076/324135\) \(21242511360\) \([2]\) \(12288\) \(1.0049\)  
6720.w4 6720j4 \([0, -1, 0, 2015, 39457]\) \(13799183324/18600435\) \(-1218998108160\) \([2]\) \(12288\) \(1.0049\)  

Rank

sage: E.rank()
 

The elliptic curves in class 6720j have rank \(0\).

Complex multiplication

The elliptic curves in class 6720j do not have complex multiplication.

Modular form 6720.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - q^{7} + q^{9} + 4 q^{11} + 6 q^{13} - q^{15} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.