Properties

Label 6720j
Number of curves 44
Conductor 67206720
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 6720j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6720.w3 6720j1 [0,1,0,285,1683][0, -1, 0, -285, -1683] 2508888064/1181252508888064/118125 120960000120960000 [2][2] 30723072 0.311710.31171 Γ0(N)\Gamma_0(N)-optimal
6720.w2 6720j2 [0,1,0,785,6417][0, -1, 0, -785, 6417] 3269383504/8930253269383504/893025 1463132160014631321600 [2,2][2, 2] 61446144 0.658280.65828  
6720.w1 6720j3 [0,1,0,11585,483777][0, -1, 0, -11585, 483777] 2624033547076/3241352624033547076/324135 2124251136021242511360 [2][2] 1228812288 1.00491.0049  
6720.w4 6720j4 [0,1,0,2015,39457][0, -1, 0, 2015, 39457] 13799183324/1860043513799183324/18600435 1218998108160-1218998108160 [2][2] 1228812288 1.00491.0049  

Rank

sage: E.rank()
 

The elliptic curves in class 6720j have rank 00.

Complex multiplication

The elliptic curves in class 6720j do not have complex multiplication.

Modular form 6720.2.a.j

sage: E.q_eigenform(10)
 
qq3+q5q7+q9+4q11+6q13q152q17+8q19+O(q20)q - q^{3} + q^{5} - q^{7} + q^{9} + 4 q^{11} + 6 q^{13} - q^{15} - 2 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.