Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 6720j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6720.w3 | 6720j1 | \([0, -1, 0, -285, -1683]\) | \(2508888064/118125\) | \(120960000\) | \([2]\) | \(3072\) | \(0.31171\) | \(\Gamma_0(N)\)-optimal |
6720.w2 | 6720j2 | \([0, -1, 0, -785, 6417]\) | \(3269383504/893025\) | \(14631321600\) | \([2, 2]\) | \(6144\) | \(0.65828\) | |
6720.w1 | 6720j3 | \([0, -1, 0, -11585, 483777]\) | \(2624033547076/324135\) | \(21242511360\) | \([2]\) | \(12288\) | \(1.0049\) | |
6720.w4 | 6720j4 | \([0, -1, 0, 2015, 39457]\) | \(13799183324/18600435\) | \(-1218998108160\) | \([2]\) | \(12288\) | \(1.0049\) |
Rank
sage: E.rank()
The elliptic curves in class 6720j have rank \(0\).
Complex multiplication
The elliptic curves in class 6720j do not have complex multiplication.Modular form 6720.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.