Properties

Label 675.d
Number of curves 22
Conductor 675675
CM Q(3)\Q(\sqrt{-3})
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Elliptic curves in class 675.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
675.d1 675c2 [0,0,1,0,169][0, 0, 1, 0, -169] 00 12301875-12301875 [][] 126126 0.0393210.039321   3-3
675.d2 675c1 [0,0,1,0,6][0, 0, 1, 0, 6] 00 16875-16875 [3][3] 4242 0.50998-0.50998 Γ0(N)\Gamma_0(N)-optimal 3-3

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 675.d have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
3311
5511
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+2T2 1 + 2 T^{2} 1.2.a
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 15T+13T2 1 - 5 T + 13 T^{2} 1.13.af
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 18T+19T2 1 - 8 T + 19 T^{2} 1.19.ai
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 675.d has complex multiplication by an order in the imaginary quadratic field Q(3)\Q(\sqrt{-3}) .

Modular form 675.2.a.d

Copy content sage:E.q_eigenform(10)
 
q2q44q7+5q13+4q16+8q19+O(q20)q - 2 q^{4} - 4 q^{7} + 5 q^{13} + 4 q^{16} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.