Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 675.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
675.d1 | 675c2 | ||||||||
675.d2 | 675c1 | -optimal |
Rank
sage: E.rank()
The elliptic curves in class 675.d have rank .
Complex multiplication
Each elliptic curve in class 675.d has complex multiplication by an order in the imaginary quadratic field .Modular form 675.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The entry is the smallest degree of a cyclic isogeny between the -th and -th curve in the isogeny class, in the LMFDB numbering.
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.