Properties

Label 6760.k
Number of curves 22
Conductor 67606760
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Elliptic curves in class 6760.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6760.k1 6760c1 [0,1,0,3436,75180][0, -1, 0, -3436, -75180] 3631696/653631696/65 8031810176080318101760 [2][2] 53765376 0.888140.88814 Γ0(N)\Gamma_0(N)-optimal
6760.k2 6760c2 [0,1,0,56,219844][0, -1, 0, -56, -219844] 4/4225-4/4225 20882706457600-20882706457600 [2][2] 1075210752 1.23471.2347  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6760.k have rank 11.

Complex multiplication

The elliptic curves in class 6760.k do not have complex multiplication.

Modular form 6760.2.a.k

Copy content sage:E.q_eigenform(10)
 
q+2q3q5+q92q112q15+2q172q19+O(q20)q + 2 q^{3} - q^{5} + q^{9} - 2 q^{11} - 2 q^{15} + 2 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.