Properties

Label 6760.k
Number of curves $2$
Conductor $6760$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 6760.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6760.k1 6760c1 \([0, -1, 0, -3436, -75180]\) \(3631696/65\) \(80318101760\) \([2]\) \(5376\) \(0.88814\) \(\Gamma_0(N)\)-optimal
6760.k2 6760c2 \([0, -1, 0, -56, -219844]\) \(-4/4225\) \(-20882706457600\) \([2]\) \(10752\) \(1.2347\)  

Rank

sage: E.rank()
 

The elliptic curves in class 6760.k have rank \(1\).

Complex multiplication

The elliptic curves in class 6760.k do not have complex multiplication.

Modular form 6760.2.a.k

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + q^{9} - 2 q^{11} - 2 q^{15} + 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.