Properties

Label 68400ee
Number of curves 33
Conductor 6840068400
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ee1")
 
E.isogeny_class()
 

Elliptic curves in class 68400ee

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
68400.cd2 68400ee1 [0,0,0,55875,5085250][0, 0, 0, -55875, 5085250] 413493625/152-413493625/152 7091712000000-7091712000000 [][] 207360207360 1.43371.4337 Γ0(N)\Gamma_0(N)-optimal
68400.cd3 68400ee2 [0,0,0,34125,19323250][0, 0, 0, 34125, 19323250] 94196375/351180894196375/3511808 163846914048000000-163846914048000000 [][] 622080622080 1.98301.9830  
68400.cd1 68400ee3 [0,0,0,307875,528902750][0, 0, 0, -307875, -528902750] 69173457625/2550136832-69173457625/2550136832 118979184033792000000-118979184033792000000 [][] 18662401866240 2.53232.5323  

Rank

sage: E.rank()
 

The elliptic curves in class 68400ee have rank 11.

Complex multiplication

The elliptic curves in class 68400ee do not have complex multiplication.

Modular form 68400.2.a.ee

sage: E.q_eigenform(10)
 
qq76q115q13+3q17q19+O(q20)q - q^{7} - 6 q^{11} - 5 q^{13} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.