Properties

Label 68400ee
Number of curves $3$
Conductor $68400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ee1")
 
E.isogeny_class()
 

Elliptic curves in class 68400ee

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
68400.cd2 68400ee1 \([0, 0, 0, -55875, 5085250]\) \(-413493625/152\) \(-7091712000000\) \([]\) \(207360\) \(1.4337\) \(\Gamma_0(N)\)-optimal
68400.cd3 68400ee2 \([0, 0, 0, 34125, 19323250]\) \(94196375/3511808\) \(-163846914048000000\) \([]\) \(622080\) \(1.9830\)  
68400.cd1 68400ee3 \([0, 0, 0, -307875, -528902750]\) \(-69173457625/2550136832\) \(-118979184033792000000\) \([]\) \(1866240\) \(2.5323\)  

Rank

sage: E.rank()
 

The elliptic curves in class 68400ee have rank \(1\).

Complex multiplication

The elliptic curves in class 68400ee do not have complex multiplication.

Modular form 68400.2.a.ee

sage: E.q_eigenform(10)
 
\(q - q^{7} - 6 q^{11} - 5 q^{13} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.