Show commands:
SageMath
E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 68450.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
68450.s1 | 68450e1 | \([1, 1, 0, -1831750, 953472750]\) | \(-16954786009/370\) | \(-14833105802031250\) | \([]\) | \(1181952\) | \(2.2190\) | \(\Gamma_0(N)\)-optimal |
68450.s2 | 68450e2 | \([1, 1, 0, -633875, 2176503125]\) | \(-702595369/50653000\) | \(-2030652184298078125000\) | \([]\) | \(3545856\) | \(2.7683\) | |
68450.s3 | 68450e3 | \([1, 1, 0, 5697750, -58360163500]\) | \(510273943271/37000000000\) | \(-1483310580203125000000000\) | \([]\) | \(10637568\) | \(3.3176\) |
Rank
sage: E.rank()
The elliptic curves in class 68450.s have rank \(1\).
Complex multiplication
The elliptic curves in class 68450.s do not have complex multiplication.Modular form 68450.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.