sage:E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 68450.s
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
68450.s1 |
68450e1 |
[1,1,0,−1831750,953472750] |
−16954786009/370 |
−14833105802031250 |
[] |
1181952 |
2.2190
|
Γ0(N)-optimal |
68450.s2 |
68450e2 |
[1,1,0,−633875,2176503125] |
−702595369/50653000 |
−2030652184298078125000 |
[] |
3545856 |
2.7683
|
|
68450.s3 |
68450e3 |
[1,1,0,5697750,−58360163500] |
510273943271/37000000000 |
−1483310580203125000000000 |
[] |
10637568 |
3.3176
|
|
sage:E.rank()
The elliptic curves in class 68450.s have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
5 | 1 |
37 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−2T+3T2 |
1.3.ac
|
7 |
1−T+7T2 |
1.7.ab
|
11 |
1−3T+11T2 |
1.11.ad
|
13 |
1+4T+13T2 |
1.13.e
|
17 |
1−3T+17T2 |
1.17.ad
|
19 |
1+2T+19T2 |
1.19.c
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1+3T+29T2 |
1.29.d
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 68450.s do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎛139313931⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.