Properties

Label 68450.s
Number of curves $3$
Conductor $68450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 68450.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
68450.s1 68450e1 \([1, 1, 0, -1831750, 953472750]\) \(-16954786009/370\) \(-14833105802031250\) \([]\) \(1181952\) \(2.2190\) \(\Gamma_0(N)\)-optimal
68450.s2 68450e2 \([1, 1, 0, -633875, 2176503125]\) \(-702595369/50653000\) \(-2030652184298078125000\) \([]\) \(3545856\) \(2.7683\)  
68450.s3 68450e3 \([1, 1, 0, 5697750, -58360163500]\) \(510273943271/37000000000\) \(-1483310580203125000000000\) \([]\) \(10637568\) \(3.3176\)  

Rank

sage: E.rank()
 

The elliptic curves in class 68450.s have rank \(1\).

Complex multiplication

The elliptic curves in class 68450.s do not have complex multiplication.

Modular form 68450.2.a.s

sage: E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} - 2 q^{6} + q^{7} - q^{8} + q^{9} + 3 q^{11} + 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 3 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.