Properties

Label 68450.s
Number of curves 33
Conductor 6845068450
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Elliptic curves in class 68450.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
68450.s1 68450e1 [1,1,0,1831750,953472750][1, 1, 0, -1831750, 953472750] 16954786009/370-16954786009/370 14833105802031250-14833105802031250 [][] 11819521181952 2.21902.2190 Γ0(N)\Gamma_0(N)-optimal
68450.s2 68450e2 [1,1,0,633875,2176503125][1, 1, 0, -633875, 2176503125] 702595369/50653000-702595369/50653000 2030652184298078125000-2030652184298078125000 [][] 35458563545856 2.76832.7683  
68450.s3 68450e3 [1,1,0,5697750,58360163500][1, 1, 0, 5697750, -58360163500] 510273943271/37000000000510273943271/37000000000 1483310580203125000000000-1483310580203125000000000 [][] 1063756810637568 3.31763.3176  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 68450.s have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
5511
373711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 12T+3T2 1 - 2 T + 3 T^{2} 1.3.ac
77 1T+7T2 1 - T + 7 T^{2} 1.7.ab
1111 13T+11T2 1 - 3 T + 11 T^{2} 1.11.ad
1313 1+4T+13T2 1 + 4 T + 13 T^{2} 1.13.e
1717 13T+17T2 1 - 3 T + 17 T^{2} 1.17.ad
1919 1+2T+19T2 1 + 2 T + 19 T^{2} 1.19.c
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 68450.s do not have complex multiplication.

Modular form 68450.2.a.s

Copy content sage:E.q_eigenform(10)
 
qq2+2q3+q42q6+q7q8+q9+3q11+2q124q13q14+q16+3q17q182q19+O(q20)q - q^{2} + 2 q^{3} + q^{4} - 2 q^{6} + q^{7} - q^{8} + q^{9} + 3 q^{11} + 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 3 q^{17} - q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.