Properties

Label 6900.d
Number of curves $1$
Conductor $6900$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 6900.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6900.d1 6900d1 \([0, -1, 0, -28, -8]\) \(393040/207\) \(1324800\) \([]\) \(864\) \(-0.13365\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6900.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 6900.d do not have complex multiplication.

Modular form 6900.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{7} + q^{9} + q^{11} - q^{13} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display