Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 6930.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6930.i1 | 6930c1 | \([1, -1, 0, -2094, -33580]\) | \(51603494067/4336640\) | \(85358085120\) | \([2]\) | \(7680\) | \(0.83928\) | \(\Gamma_0(N)\)-optimal |
6930.i2 | 6930c2 | \([1, -1, 0, 2226, -157132]\) | \(61958108493/573927200\) | \(-11296609077600\) | \([2]\) | \(15360\) | \(1.1859\) |
Rank
sage: E.rank()
The elliptic curves in class 6930.i have rank \(0\).
Complex multiplication
The elliptic curves in class 6930.i do not have complex multiplication.Modular form 6930.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.