Properties

Label 69360.bp
Number of curves 44
Conductor 6936069360
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Elliptic curves in class 69360.bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69360.bp1 69360q4 [0,1,0,20835840,36613767600][0, -1, 0, -20835840, 36613767600] 40472803590982276/28188337540472803590982276/281883375 69672749199517440006967274919951744000 [2][2] 39813123981312 2.79542.7954  
69360.bp2 69360q2 [0,1,0,1328340,548301600][0, -1, 0, -1328340, 548301600] 41948679809104/329189062541948679809104/3291890625 2034130869795600000020341308697956000000 [2,2][2, 2] 19906561990656 2.44892.4489  
69360.bp3 69360q1 [0,1,0,274935,45397458][0, -1, 0, -274935, -45397458] 5951163357184/11293121255951163357184/1129312125 436141589435586000436141589435586000 [2][2] 995328995328 2.10232.1023 Γ0(N)\Gamma_0(N)-optimal
69360.bp4 69360q3 [0,1,0,1324680,2462720832][0, -1, 0, 1324680, 2462720832] 10400706415004/11206054687510400706415004/112060546875 2769786042750000000000-2769786042750000000000 [4][4] 39813123981312 2.79542.7954  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 69360.bp have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551T1 - T
171711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+8T+23T2 1 + 8 T + 23 T^{2} 1.23.i
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 69360.bp do not have complex multiplication.

Modular form 69360.2.a.bp

Copy content sage:E.q_eigenform(10)
 
qq3+q5+q94q11+6q13q154q19+O(q20)q - q^{3} + q^{5} + q^{9} - 4 q^{11} + 6 q^{13} - q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.