sage:E = EllipticCurve("bp1")
E.isogeny_class()
Elliptic curves in class 69360.bp
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
69360.bp1 |
69360q4 |
[0,−1,0,−20835840,36613767600] |
40472803590982276/281883375 |
6967274919951744000 |
[2] |
3981312 |
2.7954
|
|
69360.bp2 |
69360q2 |
[0,−1,0,−1328340,548301600] |
41948679809104/3291890625 |
20341308697956000000 |
[2,2] |
1990656 |
2.4489
|
|
69360.bp3 |
69360q1 |
[0,−1,0,−274935,−45397458] |
5951163357184/1129312125 |
436141589435586000 |
[2] |
995328 |
2.1023
|
Γ0(N)-optimal |
69360.bp4 |
69360q3 |
[0,−1,0,1324680,2462720832] |
10400706415004/112060546875 |
−2769786042750000000000 |
[4] |
3981312 |
2.7954
|
|
sage:E.rank()
The elliptic curves in class 69360.bp have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1−T |
17 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+7T2 |
1.7.a
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−6T+13T2 |
1.13.ag
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+8T+23T2 |
1.23.i
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 69360.bp do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.