Properties

Label 69360.bp
Number of curves $4$
Conductor $69360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bp1")
 
E.isogeny_class()
 

Elliptic curves in class 69360.bp

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69360.bp1 69360q4 \([0, -1, 0, -20835840, 36613767600]\) \(40472803590982276/281883375\) \(6967274919951744000\) \([2]\) \(3981312\) \(2.7954\)  
69360.bp2 69360q2 \([0, -1, 0, -1328340, 548301600]\) \(41948679809104/3291890625\) \(20341308697956000000\) \([2, 2]\) \(1990656\) \(2.4489\)  
69360.bp3 69360q1 \([0, -1, 0, -274935, -45397458]\) \(5951163357184/1129312125\) \(436141589435586000\) \([2]\) \(995328\) \(2.1023\) \(\Gamma_0(N)\)-optimal
69360.bp4 69360q3 \([0, -1, 0, 1324680, 2462720832]\) \(10400706415004/112060546875\) \(-2769786042750000000000\) \([4]\) \(3981312\) \(2.7954\)  

Rank

sage: E.rank()
 

The elliptic curves in class 69360.bp have rank \(0\).

Complex multiplication

The elliptic curves in class 69360.bp do not have complex multiplication.

Modular form 69360.2.a.bp

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - 4 q^{11} + 6 q^{13} - q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.