Properties

Label 6936m4
Conductor 69366936
Discriminant 7415061196874150611968
j-invariant 287562283 \frac{28756228}{3}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x218592x+969488y^2=x^3+x^2-18592x+969488 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z18592xz2+969488z3y^2z=x^3+x^2z-18592xz^2+969488z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31505979x+711274662y^2=x^3-1505979x+711274662 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -18592, 969488])
 
gp: E = ellinit([0, 1, 0, -18592, 969488])
 
magma: E := EllipticCurve([0, 1, 0, -18592, 969488]);
 
oscar: E = elliptic_curve([0, 1, 0, -18592, 969488])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(7936/9,699380/27)(7936/9, 699380/27)5.08005444001836342197454244785.0800544400183634219745424478\infty
(79,0)(79, 0)0022

Integral points

(79,0) \left(79, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  6936 6936  = 2331722^{3} \cdot 3 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  7415061196874150611968 = 21031762^{10} \cdot 3 \cdot 17^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  287562283 \frac{28756228}{3}  = 223119332^{2} \cdot 3^{-1} \cdot 193^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.11782797622822342217437269281.1178279762282234221743726928
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.87640134626650570913142138402-0.87640134626650570913142138402
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05617163459916921.0561716345991692
Szpiro ratio: σm\sigma_{m} ≈ 4.6475445009999034.647544500999903

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 5.08005444001836342197454244785.0800544400183634219745424478
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.04606374093391657059570630071.0460637409339165705957063007
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 212 2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.31406075167356193093132919945.3140607516735619309313291994
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.314060752L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.0460645.0800544225.314060752\displaystyle 5.314060752 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.046064 \cdot 5.080054 \cdot 4}{2^2} \approx 5.314060752

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   6936.2.a.p

q+q3+2q5+q94q112q13+2q154q19+O(q20) q + q^{3} + 2 q^{5} + q^{9} - 4 q^{11} - 2 q^{13} + 2 q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 10240
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII^{*} additive -1 3 10 0
33 11 I1I_{1} split multiplicative -1 1 1 1
1717 22 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.48.0.127

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 16, 0, 1], [801, 16, 800, 17], [575, 0, 0, 815], [5, 4, 812, 813], [1, 0, 16, 1], [154, 595, 527, 222], [800, 629, 51, 562], [205, 544, 204, 409], [15, 2, 718, 803]]
 
GL(2,Integers(816)).subgroup(gens)
 
Gens := [[1, 16, 0, 1], [801, 16, 800, 17], [575, 0, 0, 815], [5, 4, 812, 813], [1, 0, 16, 1], [154, 595, 527, 222], [800, 629, 51, 562], [205, 544, 204, 409], [15, 2, 718, 803]];
 
sub<GL(2,Integers(816))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 816=24317 816 = 2^{4} \cdot 3 \cdot 17 , index 192192, genus 11, and generators

(11601),(8011680017),(57500815),(54812813),(10161),(154595527222),(80062951562),(205544204409),(152718803)\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 801 & 16 \\ 800 & 17 \end{array}\right),\left(\begin{array}{rr} 575 & 0 \\ 0 & 815 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 812 & 813 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 154 & 595 \\ 527 & 222 \end{array}\right),\left(\begin{array}{rr} 800 & 629 \\ 51 & 562 \end{array}\right),\left(\begin{array}{rr} 205 & 544 \\ 204 & 409 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 718 & 803 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[816])K:=\Q(E[816]) is a degree-481296384481296384 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/816Z)\GL_2(\Z/816\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 867=3172 867 = 3 \cdot 17^{2}
33 split multiplicative 44 2312=23172 2312 = 2^{3} \cdot 17^{2}
1717 additive 146146 24=233 24 = 2^{3} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 6936m consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 24a3, its twist by 1717.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(3)\Q(\sqrt{3}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(17)\Q(\sqrt{17}) Z/4Z\Z/4\Z 2.2.17.1-576.1-c5
22 Q(51)\Q(\sqrt{51}) Z/4Z\Z/4\Z 2.2.204.1-24.1-a5
44 Q(3,17)\Q(\sqrt{3}, \sqrt{17}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,17)\Q(\sqrt{6}, \sqrt{17}) Z/8Z\Z/8\Z not in database
44 Q(2,17)\Q(\sqrt{2}, \sqrt{17}) Z/8Z\Z/8\Z not in database
88 8.0.249392369664.4 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.3990277914624.16 Z/8Z\Z/8\Z not in database
88 8.8.443364212736.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.15150586457088.3 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split ord ss ord ord add ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) - 4 3 3,1 1 1 - 1 1 1 1 3 1 1 1,1
μ\mu-invariant(s) - 0 0 0,0 0 0 - 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.