y 2 = x 3 − x 2 − 4120 x + 101680 y^2=x^3-x^2-4120x+101680 y 2 = x 3 − x 2 − 4 1 2 0 x + 1 0 1 6 8 0
(homogenize , simplify )
y 2 z = x 3 − x 2 z − 4120 x z 2 + 101680 z 3 y^2z=x^3-x^2z-4120xz^2+101680z^3 y 2 z = x 3 − x 2 z − 4 1 2 0 x z 2 + 1 0 1 6 8 0 z 3
(dehomogenize , simplify )
y 2 = x 3 − 333747 x + 73123506 y^2=x^3-333747x+73123506 y 2 = x 3 − 3 3 3 7 4 7 x + 7 3 1 2 3 5 0 6
(homogenize , minimize )
sage: E = EllipticCurve([0, -1, 0, -4120, 101680])
gp: E = ellinit([0, -1, 0, -4120, 101680])
magma: E := EllipticCurve([0, -1, 0, -4120, 101680]);
oscar: E = elliptic_curve([0, -1, 0, -4120, 101680])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z / 4 Z \Z/{4}\Z Z / 4 Z
magma: MordellWeilGroup(E);
( 12 , ± 232 ) (12,\pm 232) ( 1 2 , ± 2 3 2 ) , ( 41 , 0 ) \left(41, 0\right) ( 4 1 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
6960 6960 6 9 6 0 = 2 4 ⋅ 3 ⋅ 5 ⋅ 29 2^{4} \cdot 3 \cdot 5 \cdot 29 2 4 ⋅ 3 ⋅ 5 ⋅ 2 9
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
130366033920 130366033920 1 3 0 3 6 6 0 3 3 9 2 0 = 2 12 ⋅ 3 2 ⋅ 5 ⋅ 2 9 4 2^{12} \cdot 3^{2} \cdot 5 \cdot 29^{4} 2 1 2 ⋅ 3 2 ⋅ 5 ⋅ 2 9 4
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
1888690601881 31827645 \frac{1888690601881}{31827645} 3 1 8 2 7 6 4 5 1 8 8 8 6 9 0 6 0 1 8 8 1 = 3 − 2 ⋅ 5 − 1 ⋅ 2 9 − 4 ⋅ 4 7 3 ⋅ 26 3 3 3^{-2} \cdot 5^{-1} \cdot 29^{-4} \cdot 47^{3} \cdot 263^{3} 3 − 2 ⋅ 5 − 1 ⋅ 2 9 − 4 ⋅ 4 7 3 ⋅ 2 6 3 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.93079783512452840083580342105 0.93079783512452840083580342105 0 . 9 3 0 7 9 7 8 3 5 1 2 4 5 2 8 4 0 0 8 3 5 8 0 3 4 2 1 0 5
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.23765065456458309141857129959 0.23765065456458309141857129959 0 . 2 3 7 6 5 0 6 5 4 5 6 4 5 8 3 0 9 1 4 1 8 5 7 1 2 9 9 5 9
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9326096349802515 0.9326096349802515 0 . 9 3 2 6 0 9 6 3 4 9 8 0 2 5 1 5
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.134826045662259 4.134826045662259 4 . 1 3 4 8 2 6 0 4 5 6 6 2 2 5 9
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 0 0 0
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 1.0422428412000300347032124098 1.0422428412000300347032124098 1 . 0 4 2 2 4 2 8 4 1 2 0 0 0 3 0 0 3 4 7 0 3 2 1 2 4 0 9 8
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 32 32 3 2
= 2 2 ⋅ 2 ⋅ 1 ⋅ 2 2 2^{2}\cdot2\cdot1\cdot2^{2} 2 2 ⋅ 2 ⋅ 1 ⋅ 2 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 4 4 4
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 2.0844856824000600694064248196 2.0844856824000600694064248196 2 . 0 8 4 4 8 5 6 8 2 4 0 0 0 6 0 0 6 9 4 0 6 4 2 4 8 1 9 6
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
1 1 1
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.084485682 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 1.042243 ⋅ 1.000000 ⋅ 32 4 2 ≈ 2.084485682 \begin{aligned} 2.084485682 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.042243 \cdot 1.000000 \cdot 32}{4^2} \\ & \approx 2.084485682\end{aligned} 2 . 0 8 4 4 8 5 6 8 2 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 4 2 1 ⋅ 1 . 0 4 2 2 4 3 ⋅ 1 . 0 0 0 0 0 0 ⋅ 3 2 ≈ 2 . 0 8 4 4 8 5 6 8 2
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, -1, 0, -4120, 101680]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, -1, 0, -4120, 101680]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
6960.2.a.l
q − q 3 + q 5 − 4 q 7 + q 9 + 4 q 11 + 6 q 13 − q 15 + 6 q 17 + 4 q 19 + O ( q 20 ) q - q^{3} + q^{5} - 4 q^{7} + q^{9} + 4 q^{11} + 6 q^{13} - q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20}) q − q 3 + q 5 − 4 q 7 + q 9 + 4 q 1 1 + 6 q 1 3 − q 1 5 + 6 q 1 7 + 4 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [936, 3, 5, 2], [7, 6, 1154, 1155], [717, 724, 678, 139], [1019, 1018, 738, 155], [1153, 8, 1152, 9], [321, 8, 124, 33]]
GL(2,Integers(1160)).subgroup(gens)
magma: Gens := [[1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [936, 3, 5, 2], [7, 6, 1154, 1155], [717, 724, 678, 139], [1019, 1018, 738, 155], [1153, 8, 1152, 9], [321, 8, 124, 33]];
sub<GL(2,Integers(1160))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 1160 = 2 3 ⋅ 5 ⋅ 29 1160 = 2^{3} \cdot 5 \cdot 29 1 1 6 0 = 2 3 ⋅ 5 ⋅ 2 9 , index 48 48 4 8 , genus 0 0 0 , and generators
( 1 0 8 1 ) , ( 1 8 0 1 ) , ( 1 4 4 17 ) , ( 936 3 5 2 ) , ( 7 6 1154 1155 ) , ( 717 724 678 139 ) , ( 1019 1018 738 155 ) , ( 1153 8 1152 9 ) , ( 321 8 124 33 ) \left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
936 & 3 \\
5 & 2
\end{array}\right),\left(\begin{array}{rr}
7 & 6 \\
1154 & 1155
\end{array}\right),\left(\begin{array}{rr}
717 & 724 \\
678 & 139
\end{array}\right),\left(\begin{array}{rr}
1019 & 1018 \\
738 & 155
\end{array}\right),\left(\begin{array}{rr}
1153 & 8 \\
1152 & 9
\end{array}\right),\left(\begin{array}{rr}
321 & 8 \\
124 & 33
\end{array}\right) ( 1 8 0 1 ) , ( 1 0 8 1 ) , ( 1 4 4 1 7 ) , ( 9 3 6 5 3 2 ) , ( 7 1 1 5 4 6 1 1 5 5 ) , ( 7 1 7 6 7 8 7 2 4 1 3 9 ) , ( 1 0 1 9 7 3 8 1 0 1 8 1 5 5 ) , ( 1 1 5 3 1 1 5 2 8 9 ) , ( 3 2 1 1 2 4 8 3 3 ) .
The torsion field K : = Q ( E [ 1160 ] ) K:=\Q(E[1160]) K : = Q ( E [ 1 1 6 0 ] ) is a degree-10476748800 10476748800 1 0 4 7 6 7 4 8 8 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 1160 Z ) \GL_2(\Z/1160\Z) GL 2 ( Z / 1 1 6 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
5 5 5
3 3 3
nonsplit multiplicative
4 4 4
2320 = 2 4 ⋅ 5 ⋅ 29 2320 = 2^{4} \cdot 5 \cdot 29 2 3 2 0 = 2 4 ⋅ 5 ⋅ 2 9
5 5 5
split multiplicative
6 6 6
1392 = 2 4 ⋅ 3 ⋅ 29 1392 = 2^{4} \cdot 3 \cdot 29 1 3 9 2 = 2 4 ⋅ 3 ⋅ 2 9
29 29 2 9
split multiplicative
30 30 3 0
240 = 2 4 ⋅ 3 ⋅ 5 240 = 2^{4} \cdot 3 \cdot 5 2 4 0 = 2 4 ⋅ 3 ⋅ 5
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2 and 4.
Its isogeny class 6960bf
consists of 4 curves linked by isogenies of
degrees dividing 4.
The minimal quadratic twist of this elliptic curve is
435c3 , its twist by − 4 -4 − 4 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 4 Z \cong \Z/{4}\Z ≅ Z / 4 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
4 4 4
4.0.1076480.1
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
8.0.5184000000.15
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
8 8 8
8.8.3666544704000000.23
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
8 8 8
8.0.28970229760000.14
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
8 8 8
deg 8
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 16 Z \Z/16\Z Z / 1 6 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 12 Z \Z/2\Z \oplus \Z/12\Z Z / 2 Z ⊕ Z / 1 2 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ \lambda λ and μ \mu μ -invariants for primes p ≥ 3 p\ge
3 p ≥ 3 of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .