Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 700.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
700.d1 | 700a2 | \([0, -1, 0, -20133, -1092863]\) | \(-225637236736/1715\) | \(-6860000000\) | \([]\) | \(864\) | \(1.0623\) | |
700.d2 | 700a1 | \([0, -1, 0, -133, -2863]\) | \(-65536/875\) | \(-3500000000\) | \([]\) | \(288\) | \(0.51296\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 700.d have rank \(0\).
Complex multiplication
The elliptic curves in class 700.d do not have complex multiplication.Modular form 700.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.