Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 702.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
702.a1 | 702e3 | \([1, -1, 0, -472266, 125037036]\) | \(-47937788722586831331/1352\) | \(-328536\) | \([3]\) | \(3240\) | \(1.4950\) | |
702.a2 | 702e1 | \([1, -1, 0, -5826, 173076]\) | \(-810052784622459/2471326208\) | \(-66725807616\) | \([3]\) | \(1080\) | \(0.94568\) | \(\Gamma_0(N)\)-optimal |
702.a3 | 702e2 | \([1, -1, 0, 11919, 881693]\) | \(9513304174269/22682796032\) | \(-446465474297856\) | \([]\) | \(3240\) | \(1.4950\) |
Rank
sage: E.rank()
The elliptic curves in class 702.a have rank \(0\).
Complex multiplication
The elliptic curves in class 702.a do not have complex multiplication.Modular form 702.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.