Properties

Label 702.a
Number of curves 33
Conductor 702702
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 702.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
702.a1 702e3 [1,1,0,472266,125037036][1, -1, 0, -472266, 125037036] 47937788722586831331/1352-47937788722586831331/1352 328536-328536 [3][3] 32403240 1.49501.4950  
702.a2 702e1 [1,1,0,5826,173076][1, -1, 0, -5826, 173076] 810052784622459/2471326208-810052784622459/2471326208 66725807616-66725807616 [3][3] 10801080 0.945680.94568 Γ0(N)\Gamma_0(N)-optimal
702.a3 702e2 [1,1,0,11919,881693][1, -1, 0, 11919, 881693] 9513304174269/226827960329513304174269/22682796032 446465474297856-446465474297856 [][] 32403240 1.49501.4950  

Rank

sage: E.rank()
 

The elliptic curves in class 702.a have rank 00.

Complex multiplication

The elliptic curves in class 702.a do not have complex multiplication.

Modular form 702.2.a.a

sage: E.q_eigenform(10)
 
qq2+q43q5q7q8+3q103q11+q13+q14+q16+6q17+2q19+O(q20)q - q^{2} + q^{4} - 3 q^{5} - q^{7} - q^{8} + 3 q^{10} - 3 q^{11} + q^{13} + q^{14} + q^{16} + 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.