Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 70395g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
70395.n6 | 70395g1 | \([1, 1, 0, -39717, -3063096]\) | \(147281603041/5265\) | \(247696563465\) | \([2]\) | \(165888\) | \(1.2753\) | \(\Gamma_0(N)\)-optimal |
70395.n5 | 70395g2 | \([1, 1, 0, -41522, -2771769]\) | \(168288035761/27720225\) | \(1304122406643225\) | \([2, 2]\) | \(331776\) | \(1.6219\) | |
70395.n7 | 70395g3 | \([1, 1, 0, 75803, -15466334]\) | \(1023887723039/2798036865\) | \(-131636109384403065\) | \([2]\) | \(663552\) | \(1.9685\) | |
70395.n4 | 70395g4 | \([1, 1, 0, -187727, 28603824]\) | \(15551989015681/1445900625\) | \(68023668741575625\) | \([2, 2]\) | \(663552\) | \(1.9685\) | |
70395.n8 | 70395g5 | \([1, 1, 0, 218398, 135902049]\) | \(24487529386319/183539412225\) | \(-8634773346347295225\) | \([2]\) | \(1327104\) | \(2.3151\) | |
70395.n2 | 70395g6 | \([1, 1, 0, -2933132, 1932267651]\) | \(59319456301170001/594140625\) | \(27951869141015625\) | \([2, 2]\) | \(1327104\) | \(2.3151\) | |
70395.n3 | 70395g7 | \([1, 1, 0, -2862737, 2029511304]\) | \(-55150149867714721/5950927734375\) | \(-279966638031005859375\) | \([2]\) | \(2654208\) | \(2.6616\) | |
70395.n1 | 70395g8 | \([1, 1, 0, -46930007, 123724417026]\) | \(242970740812818720001/24375\) | \(1146743349375\) | \([2]\) | \(2654208\) | \(2.6616\) |
Rank
sage: E.rank()
The elliptic curves in class 70395g have rank \(1\).
Complex multiplication
The elliptic curves in class 70395g do not have complex multiplication.Modular form 70395.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 8 & 8 \\ 8 & 4 & 8 & 2 & 4 & 1 & 2 & 2 \\ 16 & 8 & 16 & 4 & 8 & 2 & 1 & 4 \\ 16 & 8 & 16 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.