sage:E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 7056.a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7056.a1 |
7056cd2 |
[0,0,0,−970347,−357821030] |
838561807/26244 |
3162276680813494272 |
[2] |
172032 |
2.3249
|
|
7056.a2 |
7056cd1 |
[0,0,0,17493,−18991910] |
4913/1296 |
−156161811398197248 |
[2] |
86016 |
1.9783
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 7056.a have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+4T+5T2 |
1.5.e
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1+17T2 |
1.17.a
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+23T2 |
1.23.a
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7056.a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.