Properties

Label 7056.bw
Number of curves $2$
Conductor $7056$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bw1")
 
E.isogeny_class()
 

Elliptic curves in class 7056.bw

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7056.bw1 7056ca2 \([0, 0, 0, -1281, 17647]\) \(406749952\) \(571536\) \([]\) \(2160\) \(0.34427\)  
7056.bw2 7056ca1 \([0, 0, 0, -21, 7]\) \(1792\) \(571536\) \([]\) \(720\) \(-0.20503\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 7056.bw have rank \(0\).

Complex multiplication

The elliptic curves in class 7056.bw do not have complex multiplication.

Modular form 7056.2.a.bw

sage: E.q_eigenform(10)
 
\(q + 3 q^{5} - 3 q^{11} - 2 q^{13} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.