sage:E = EllipticCurve("bw1")
E.isogeny_class()
Elliptic curves in class 7056.bw
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7056.bw1 |
7056ca2 |
[0,0,0,−1281,17647] |
406749952 |
571536 |
[] |
2160 |
0.34427
|
|
7056.bw2 |
7056ca1 |
[0,0,0,−21,7] |
1792 |
571536 |
[] |
720 |
−0.20503
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 7056.bw have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−3T+5T2 |
1.5.ad
|
11 |
1+3T+11T2 |
1.11.d
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1−3T+17T2 |
1.17.ad
|
19 |
1+T+19T2 |
1.19.b
|
23 |
1−3T+23T2 |
1.23.ad
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7056.bw do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.