sage:E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 7056.n
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7056.n1 |
7056bv2 |
[0,0,0,−19551,−974806] |
109744/9 |
67778563974912 |
[2] |
21504 |
1.3965
|
|
7056.n2 |
7056bv1 |
[0,0,0,−4116,84035] |
16384/3 |
1412053416144 |
[2] |
10752 |
1.0499
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 7056.n have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1+4T+13T2 |
1.13.e
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+8T+19T2 |
1.19.i
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−10T+29T2 |
1.29.ak
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7056.n do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.