Properties

Label 7056.s
Number of curves 11
Conductor 70567056
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Elliptic curves in class 7056.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7056.s1 7056s1 [0,0,0,63,189][0, 0, 0, -63, 189] 4838448384 571536571536 [][] 672672 0.10506-0.10506 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 7056.s1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
7711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+T+5T2 1 + T + 5 T^{2} 1.5.b
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 13T+17T2 1 - 3 T + 17 T^{2} 1.17.ad
1919 15T+19T2 1 - 5 T + 19 T^{2} 1.19.af
2323 1+3T+23T2 1 + 3 T + 23 T^{2} 1.23.d
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7056.s do not have complex multiplication.

Modular form 7056.2.a.s

Copy content sage:E.q_eigenform(10)
 
qq5q112q13+3q17+5q19+O(q20)q - q^{5} - q^{11} - 2 q^{13} + 3 q^{17} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display