Properties

Label 7056bw2
Conductor 70567056
Discriminant 2.333×1014-2.333\times 10^{14}
j-invariant 17139109765121594323 -\frac{1713910976512}{1594323}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3131376x+18343024y^2=x^3-131376x+18343024 Copy content Toggle raw display (homogenize, simplify)
y2z=x3131376xz2+18343024z3y^2z=x^3-131376xz^2+18343024z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3131376x+18343024y^2=x^3-131376x+18343024 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -131376, 18343024])
 
gp: E = ellinit([0, 0, 0, -131376, 18343024])
 
magma: E := EllipticCurve([0, 0, 0, -131376, 18343024]);
 
oscar: E = elliptic_curve([0, 0, 0, -131376, 18343024])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  7056 7056  = 2432722^{4} \cdot 3^{2} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  233270525472768-233270525472768 = 121231972-1 \cdot 2^{12} \cdot 3^{19} \cdot 7^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  17139109765121594323 -\frac{1713910976512}{1594323}  = 12123137173233-1 \cdot 2^{12} \cdot 3^{-13} \cdot 7 \cdot 17^{3} \cdot 23^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.67984048720571622111661330881.6798404872057162211166133088
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.113068804135830515150866444970.11306880413583051515086644497
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10592374015351381.1059237401535138
Szpiro ratio: σm\sigma_{m} ≈ 5.30067789569452155.3006778956945215

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.554271773367909262116730015750.55427177336790926211673001575
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 121 1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.10854354673581852423346003151.1085435467358185242334600315
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.108543547L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5542721.0000002121.108543547\displaystyle 1.108543547 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.554272 \cdot 1.000000 \cdot 2}{1^2} \approx 1.108543547

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   7056.2.a.m

q2q52q11q13+q19+O(q20) q - 2 q^{5} - 2 q^{11} - q^{13} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 24960
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII^{*} additive -1 4 12 0
33 22 I13I_{13}^{*} additive -1 2 19 13
77 11 IIII additive -1 2 2 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
1313 13B.4.2 13.28.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[15, 26, 130, 287], [14, 23, 871, 339], [1067, 26, 1066, 27], [545, 0, 0, 1091], [1, 26, 0, 1], [571, 1066, 572, 1065], [1078, 1069, 767, 753], [196, 13, 169, 534], [485, 26, 156, 101], [1, 0, 26, 1]]
 
GL(2,Integers(1092)).subgroup(gens)
 
Gens := [[15, 26, 130, 287], [14, 23, 871, 339], [1067, 26, 1066, 27], [545, 0, 0, 1091], [1, 26, 0, 1], [571, 1066, 572, 1065], [1078, 1069, 767, 753], [196, 13, 169, 534], [485, 26, 156, 101], [1, 0, 26, 1]];
 
sub<GL(2,Integers(1092))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1092=223713 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 , index 336336, genus 99, and generators

(1526130287),(1423871339),(106726106627),(545001091),(12601),(57110665721065),(10781069767753),(19613169534),(48526156101),(10261)\left(\begin{array}{rr} 15 & 26 \\ 130 & 287 \end{array}\right),\left(\begin{array}{rr} 14 & 23 \\ 871 & 339 \end{array}\right),\left(\begin{array}{rr} 1067 & 26 \\ 1066 & 27 \end{array}\right),\left(\begin{array}{rr} 545 & 0 \\ 0 & 1091 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 571 & 1066 \\ 572 & 1065 \end{array}\right),\left(\begin{array}{rr} 1078 & 1069 \\ 767 & 753 \end{array}\right),\left(\begin{array}{rr} 196 & 13 \\ 169 & 534 \end{array}\right),\left(\begin{array}{rr} 485 & 26 \\ 156 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1092])K:=\Q(E[1092]) is a degree-724598784724598784 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1092Z)\GL_2(\Z/1092\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 441=3272 441 = 3^{2} \cdot 7^{2}
33 additive 88 784=2472 784 = 2^{4} \cdot 7^{2}
77 additive 1414 144=2432 144 = 2^{4} \cdot 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 13.
Its isogeny class 7056bw consists of 2 curves linked by isogenies of degree 13.

Twists

The minimal quadratic twist of this elliptic curve is 147c2, its twist by 1212.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.588.1 Z/2Z\Z/2\Z not in database
66 6.0.1037232.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.5335338855168.6 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 12.12.1511627387455612658340974592.1 Z/13Z\Z/13\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord add ord ord ss ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) - - 0 - 0 0 0,0 2 0,0 0 0 0 0 0 0
μ\mu-invariant(s) - - 0 - 0 0 0,0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.