Properties

Label 7098y2
Conductor 70987098
Discriminant 12713603994-12713603994
j-invariant 16809142695786802 -\frac{1680914269}{5786802}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3322x5890y^2+xy=x^3-322x-5890 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3322xz25890z3y^2z+xyz=x^3-322xz^2-5890z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3417339x273551850y^2=x^3-417339x-273551850 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -322, -5890])
 
gp: E = ellinit([1, 0, 0, -322, -5890])
 
magma: E := EllipticCurve([1, 0, 0, -322, -5890]);
 
oscar: E = elliptic_curve([1, 0, 0, -322, -5890])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(95/4,95/8)(95/4, -95/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  7098 7098  = 2371322 \cdot 3 \cdot 7 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  12713603994-12713603994 = 1231072133-1 \cdot 2 \cdot 3^{10} \cdot 7^{2} \cdot 13^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  16809142695786802 -\frac{1680914269}{5786802}  = 12131072293413-1 \cdot 2^{-1} \cdot 3^{-10} \cdot 7^{-2} \cdot 29^{3} \cdot 41^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.624900567115052519666981584910.62490056711505251966698158491
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.016336772250331664346390275481-0.016336772250331664346390275481
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.04976954166578881.0497695416657888
Szpiro ratio: σm\sigma_{m} ≈ 3.48190554946341773.4819055494634177

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.517747627061621358076169875250.51774762706162135807616987525
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 40 40  = 1(25)22 1\cdot( 2 \cdot 5 )\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 5.17747627061621358076169875255.1774762706162135807616987525
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.177476271L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5177481.00000040225.177476271\displaystyle 5.177476271 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.517748 \cdot 1.000000 \cdot 40}{2^2} \approx 5.177476271

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   7098.2.a.bc

q+q2+q3+q4+2q5+q6q7+q8+q9+2q10+q12q14+2q15+q16+2q17+q18+4q19+O(q20) q + q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + 2 q^{10} + q^{12} - q^{14} + 2 q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 4800
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
33 1010 I10I_{10} split multiplicative -1 1 10 10
77 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1313 22 IIIIII additive -1 2 3 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
55 5B 5.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[8402, 15, 5845, 10658], [1, 0, 20, 1], [11, 16, 10680, 10571], [1, 20, 0, 1], [7801, 20, 1570, 201], [3641, 20, 3650, 201], [10901, 20, 10900, 21], [5466, 5, 2785, 46], [16, 5, 5415, 10906], [1, 10, 10, 101], [4371, 20, 10900, 10787]]
 
GL(2,Integers(10920)).subgroup(gens)
 
Gens := [[8402, 15, 5845, 10658], [1, 0, 20, 1], [11, 16, 10680, 10571], [1, 20, 0, 1], [7801, 20, 1570, 201], [3641, 20, 3650, 201], [10901, 20, 10900, 21], [5466, 5, 2785, 46], [16, 5, 5415, 10906], [1, 10, 10, 101], [4371, 20, 10900, 10787]];
 
sub<GL(2,Integers(10920))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 10920=2335713 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 , index 288288, genus 55, and generators

(840215584510658),(10201),(11161068010571),(12001),(7801201570201),(3641203650201),(10901201090021),(54665278546),(165541510906),(11010101),(4371201090010787)\left(\begin{array}{rr} 8402 & 15 \\ 5845 & 10658 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 10680 & 10571 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7801 & 20 \\ 1570 & 201 \end{array}\right),\left(\begin{array}{rr} 3641 & 20 \\ 3650 & 201 \end{array}\right),\left(\begin{array}{rr} 10901 & 20 \\ 10900 & 21 \end{array}\right),\left(\begin{array}{rr} 5466 & 5 \\ 2785 & 46 \end{array}\right),\left(\begin{array}{rr} 16 & 5 \\ 5415 & 10906 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 4371 & 20 \\ 10900 & 10787 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[10920])K:=\Q(E[10920]) is a degree-64924051046406492405104640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/10920Z)\GL_2(\Z/10920\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 13 13
33 split multiplicative 44 2366=27132 2366 = 2 \cdot 7 \cdot 13^{2}
55 good 22 2366=27132 2366 = 2 \cdot 7 \cdot 13^{2}
77 nonsplit multiplicative 88 1014=23132 1014 = 2 \cdot 3 \cdot 13^{2}
1313 additive 5050 42=237 42 = 2 \cdot 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 5 and 10.
Its isogeny class 7098y consists of 4 curves linked by isogenies of degrees dividing 10.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(26)\Q(\sqrt{-26}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.31004064.2 Z/4Z\Z/4\Z not in database
44 4.0.2197.1 Z/10Z\Z/10\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
88 8.0.19770609664.1 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/20Z\Z/20\Z not in database
2020 20.4.3402114457360605975494238555914000000000000000.1 Z/10Z\Z/10\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 13
Reduction type split split ord nonsplit add
λ\lambda-invariant(s) 1 3 2 0 -
μ\mu-invariant(s) 1 0 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p7p\ge 7 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.