Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 722.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
722.b1 | 722c2 | \([1, 0, 1, -25278, 1710222]\) | \(-37966934881/4952198\) | \(-232980517796438\) | \([]\) | \(3600\) | \(1.4900\) | |
722.b2 | 722c1 | \([1, 0, 1, -8, -8138]\) | \(-1/608\) | \(-28603895648\) | \([]\) | \(720\) | \(0.68529\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 722.b have rank \(0\).
Complex multiplication
The elliptic curves in class 722.b do not have complex multiplication.Modular form 722.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.