Properties

Label 7225b3
Conductor 72257225
Discriminant 6.412×10126.412\times 10^{12}
j-invariant 8248329497717 \frac{82483294977}{17}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2655217x203975184y^2+xy=x^3-x^2-655217x-203975184 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z655217xz2203975184z3y^2z+xyz=x^3-x^2z-655217xz^2-203975184z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x310483475x13064895250y^2=x^3-10483475x-13064895250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -655217, -203975184])
 
gp: E = ellinit([1, -1, 0, -655217, -203975184])
 
magma: E := EllipticCurve([1, -1, 0, -655217, -203975184]);
 
oscar: E = elliptic_curve([1, -1, 0, -655217, -203975184])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1183558796675241/2533859076100,917714583723572604207/4033422215926741000)(-1183558796675241/2533859076100, 917714583723572604207/4033422215926741000)31.61706703259632440561761750631.617067032596324405617617506\infty
(1869/4,1869/8)(-1869/4, 1869/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  7225 7225  = 521725^{2} \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  64115417656256411541765625 = 561775^{6} \cdot 17^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  8248329497717 \frac{82483294977}{17}  = 33171145133^{3} \cdot 17^{-1} \cdot 1451^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.84468950730381474646771397131.8446895073038147464677139713
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.37663612094134348095743300425-0.37663612094134348095743300425
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03130507539005881.0313050753900588
Szpiro ratio: σm\sigma_{m} ≈ 5.8289258118038925.828925811803892

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 31.61706703259632440561761750631.617067032596324405617617506
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.167804359609909130428609682880.16780435960990913042860968288
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 22 2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.30548168614839618319460723865.3054816861483961831946072386
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.305481686L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.16780431.6170674225.305481686\displaystyle 5.305481686 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.167804 \cdot 31.617067 \cdot 4}{2^2} \approx 5.305481686

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   7225.2.a.g

q+q2q4+4q73q83q9+2q13+4q14q163q184q19+O(q20) q + q^{2} - q^{4} + 4 q^{7} - 3 q^{8} - 3 q^{9} + 2 q^{13} + 4 q^{14} - q^{16} - 3 q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 36864
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
55 22 I0I_0^{*} additive 1 2 6 0
1717 22 I1I_{1}^{*} additive 1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 32.48.0.12

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[5377, 64, 5376, 65], [1, 64, 0, 1], [3974, 1025, 1615, 4024], [511, 2240, 2890, 1], [59, 10, 4926, 2679], [1, 0, 64, 1], [15, 286, 314, 4899], [4071, 210, 5250, 1071], [3263, 0, 0, 5439]]
 
GL(2,Integers(5440)).subgroup(gens)
 
Gens := [[5377, 64, 5376, 65], [1, 64, 0, 1], [3974, 1025, 1615, 4024], [511, 2240, 2890, 1], [59, 10, 4926, 2679], [1, 0, 64, 1], [15, 286, 314, 4899], [4071, 210, 5250, 1071], [3263, 0, 0, 5439]];
 
sub<GL(2,Integers(5440))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 5440=26517 5440 = 2^{6} \cdot 5 \cdot 17 , index 15361536, genus 5353, and generators

(537764537665),(16401),(3974102516154024),(511224028901),(591049262679),(10641),(152863144899),(407121052501071),(3263005439)\left(\begin{array}{rr} 5377 & 64 \\ 5376 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 64 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3974 & 1025 \\ 1615 & 4024 \end{array}\right),\left(\begin{array}{rr} 511 & 2240 \\ 2890 & 1 \end{array}\right),\left(\begin{array}{rr} 59 & 10 \\ 4926 & 2679 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 64 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 286 \\ 314 & 4899 \end{array}\right),\left(\begin{array}{rr} 4071 & 210 \\ 5250 & 1071 \end{array}\right),\left(\begin{array}{rr} 3263 & 0 \\ 0 & 5439 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[5440])K:=\Q(E[5440]) is a degree-154014842880154014842880 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/5440Z)\GL_2(\Z/5440\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
55 additive 1414 289=172 289 = 17^{2}
1717 additive 162162 25=52 25 = 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 7225b consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 17a3, its twist by 8585.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(17)\Q(\sqrt{17}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(85)\Q(\sqrt{-85}) Z/4Z\Z/4\Z not in database
22 Q(5)\Q(\sqrt{-5}) Z/4Z\Z/4\Z not in database
44 Q(5,17)\Q(\sqrt{-5}, \sqrt{17}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.241375690000.5 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.3421020160000.38 Z/8Z\Z/8\Z not in database
88 8.0.988674826240000.49 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.32993039626875.1 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord ss add ord ss ord add ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) ? 1,1 - 1 1,1 1 - 1 1 1 1 1 3 1 1,1
μ\mu-invariant(s) ? 0,0 - 0 0,0 0 - 0 0 0 0 0 0 0 0,0

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.