Properties

Label 735.e
Number of curves 22
Conductor 735735
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 735.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
735.e1 735d2 [0,1,1,10061,392605][0, 1, 1, -10061, -392605] 19539165184/46875-19539165184/46875 270225046875-270225046875 [][] 10081008 1.07291.0729  
735.e2 735d1 [0,1,1,229,2614][0, 1, 1, 229, -2614] 229376/675229376/675 3891240675-3891240675 [3][3] 336336 0.523570.52357 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 735.e have rank 00.

Complex multiplication

The elliptic curves in class 735.e do not have complex multiplication.

Modular form 735.2.a.e

sage: E.q_eigenform(10)
 
q+q32q4q5+q92q12q13q15+4q16+6q17+5q19+O(q20)q + q^{3} - 2 q^{4} - q^{5} + q^{9} - 2 q^{12} - q^{13} - q^{15} + 4 q^{16} + 6 q^{17} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.