Properties

Label 7360.v1
Conductor $7360$
Discriminant $-7786880000$
j-invariant \( -\frac{687518464}{7604375} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3+x^2-185x-4417\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3+x^2z-185xz^2-4417z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-15012x-3174984\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -185, -4417])
 
gp: E = ellinit([0, 1, 0, -185, -4417])
 
magma: E := EllipticCurve([0, 1, 0, -185, -4417]);
 
oscar: E = elliptic_curve([0, 1, 0, -185, -4417])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(26, 95\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $2.4327609210088382506138556176$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Integral points

\((26,\pm 95)\) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 7360 \)  =  $2^{6} \cdot 5 \cdot 23$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-7786880000 $  =  $-1 \cdot 2^{10} \cdot 5^{4} \cdot 23^{3} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -\frac{687518464}{7604375} \)  =  $-1 \cdot 2^{8} \cdot 5^{-4} \cdot 23^{-3} \cdot 139^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $0.57999294604753949234934145254\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $0.0023702955809184011683146846582\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $0.910967035032151\dots$
Szpiro ratio: $3.4009493296282742\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $2.4327609210088382506138556176\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.55978224683120886250344700687\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 4 $  = $ 1\cdot2^{2}\cdot1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $1$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 5.4472654974619539986957180587 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 5.447265497 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.559782 \cdot 2.432761 \cdot 4}{1^2} \approx 5.447265497$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   7360.2.a.v

\( q + q^{3} + q^{5} + 4 q^{7} - 2 q^{9} - 6 q^{11} + q^{13} + q^{15} + 2 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 4608
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $v_p(N)$ $v_p(\Delta)$ $v_p(\mathrm{den}(j))$
$2$ $1$ $I_0^{*}$ additive -1 6 10 0
$5$ $4$ $I_{4}$ split multiplicative -1 1 4 4
$23$ $1$ $I_{3}$ nonsplit multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[4, 3, 9, 7], [139, 0, 0, 1], [97, 6, 15, 19], [133, 6, 132, 7], [275, 0, 0, 551], [1, 6, 0, 1], [3, 4, 8, 11], [547, 6, 546, 7], [528, 431, 437, 459], [1, 0, 6, 1]]
 
GL(2,Integers(552)).subgroup(gens)
 
Gens := [[4, 3, 9, 7], [139, 0, 0, 1], [97, 6, 15, 19], [133, 6, 132, 7], [275, 0, 0, 551], [1, 6, 0, 1], [3, 4, 8, 11], [547, 6, 546, 7], [528, 431, 437, 459], [1, 0, 6, 1]];
 
sub<GL(2,Integers(552))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 552 = 2^{3} \cdot 3 \cdot 23 \), index $16$, genus $0$, and generators

$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 139 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 6 \\ 15 & 19 \end{array}\right),\left(\begin{array}{rr} 133 & 6 \\ 132 & 7 \end{array}\right),\left(\begin{array}{rr} 275 & 0 \\ 0 & 551 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 547 & 6 \\ 546 & 7 \end{array}\right),\left(\begin{array}{rr} 528 & 431 \\ 437 & 459 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[552])$ is a degree-$1231110144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/552\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $2$ \( 23 \)
$3$ good $2$ \( 320 = 2^{6} \cdot 5 \)
$5$ split multiplicative $6$ \( 1472 = 2^{6} \cdot 23 \)
$23$ nonsplit multiplicative $24$ \( 320 = 2^{6} \cdot 5 \)

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 7360.v consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 460.c1, its twist by $-8$.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-2}) \) \(\Z/3\Z\) not in database
$3$ 3.1.23.1 \(\Z/2\Z\) not in database
$6$ 6.0.12167.1 \(\Z/2\Z \oplus \Z/2\Z\) not in database
$6$ 6.2.34560000.1 \(\Z/3\Z\) not in database
$6$ 6.0.270848.2 \(\Z/6\Z\) not in database
$12$ 12.2.57123491966615552.48 \(\Z/4\Z\) not in database
$12$ 12.0.1194393600000000.1 \(\Z/3\Z \oplus \Z/3\Z\) not in database
$12$ 12.0.38806720086016.9 \(\Z/2\Z \oplus \Z/6\Z\) not in database
$18$ 18.0.53605759320081830855363788800000000.1 \(\Z/9\Z\) not in database
$18$ 18.2.6110661371624423424000000000000.2 \(\Z/6\Z\) not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord split ord ord ord ss ord nonsplit ord ord ord ord ord ord
$\lambda$-invariant(s) - 3 4 1 1 1 1,1 1 1 1 1 1 1 1 1
$\mu$-invariant(s) - 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

$p$-adic regulators

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.