sage:E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 740.b
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
740.b1 |
740b2 |
[0,1,0,−12021,−511321] |
750484394082304/578125 |
148000000 |
[] |
432 |
0.87559
|
|
740.b2 |
740b1 |
[0,1,0,−181,−425] |
2575826944/1266325 |
324179200 |
[3] |
144 |
0.32628
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 740.b have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1+T |
37 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−T+3T2 |
1.3.ab
|
7 |
1+T+7T2 |
1.7.b
|
11 |
1+3T+11T2 |
1.11.d
|
13 |
1+4T+13T2 |
1.13.e
|
17 |
1+17T2 |
1.17.a
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+23T2 |
1.23.a
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 740.b do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.