Properties

Label 740.b
Number of curves 22
Conductor 740740
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Elliptic curves in class 740.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
740.b1 740b2 [0,1,0,12021,511321][0, 1, 0, -12021, -511321] 750484394082304/578125750484394082304/578125 148000000148000000 [][] 432432 0.875590.87559  
740.b2 740b1 [0,1,0,181,425][0, 1, 0, -181, -425] 2575826944/12663252575826944/1266325 324179200324179200 [3][3] 144144 0.326280.32628 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 740.b have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
551+T1 + T
37371T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1T+3T2 1 - T + 3 T^{2} 1.3.ab
77 1+T+7T2 1 + T + 7 T^{2} 1.7.b
1111 1+3T+11T2 1 + 3 T + 11 T^{2} 1.11.d
1313 1+4T+13T2 1 + 4 T + 13 T^{2} 1.13.e
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 740.b do not have complex multiplication.

Modular form 740.2.a.b

Copy content sage:E.q_eigenform(10)
 
q+q3q5q72q93q114q13q154q19+O(q20)q + q^{3} - q^{5} - q^{7} - 2 q^{9} - 3 q^{11} - 4 q^{13} - q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.