Properties

Label 7400.b
Number of curves $2$
Conductor $7400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 7400.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7400.b1 7400j1 \([0, 1, 0, -1208, 9088]\) \(97556/37\) \(74000000000\) \([2]\) \(7040\) \(0.78504\) \(\Gamma_0(N)\)-optimal
7400.b2 7400j2 \([0, 1, 0, 3792, 69088]\) \(1507142/1369\) \(-5476000000000\) \([2]\) \(14080\) \(1.1316\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7400.b have rank \(1\).

Complex multiplication

The elliptic curves in class 7400.b do not have complex multiplication.

Modular form 7400.2.a.b

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.