Properties

Label 7400.b
Number of curves 22
Conductor 74007400
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Elliptic curves in class 7400.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7400.b1 7400j1 [0,1,0,1208,9088][0, 1, 0, -1208, 9088] 97556/3797556/37 7400000000074000000000 [2][2] 70407040 0.785040.78504 Γ0(N)\Gamma_0(N)-optimal
7400.b2 7400j2 [0,1,0,3792,69088][0, 1, 0, 3792, 69088] 1507142/13691507142/1369 5476000000000-5476000000000 [2][2] 1408014080 1.13161.1316  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7400.b have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
37371+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7400.b do not have complex multiplication.

Modular form 7400.2.a.b

Copy content sage:E.q_eigenform(10)
 
q2q3+4q7+q9+4q112q13+2q174q19+O(q20)q - 2 q^{3} + 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.