sage:E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 7400.b
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7400.b1 |
7400j1 |
[0,1,0,−1208,9088] |
97556/37 |
74000000000 |
[2] |
7040 |
0.78504
|
Γ0(N)-optimal |
7400.b2 |
7400j2 |
[0,1,0,3792,69088] |
1507142/1369 |
−5476000000000 |
[2] |
14080 |
1.1316
|
|
sage:E.rank()
The elliptic curves in class 7400.b have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
37 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+23T2 |
1.23.a
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7400.b do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.