Properties

Label 7440.n
Number of curves $1$
Conductor $7440$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 7440.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7440.n1 7440e1 \([0, -1, 0, -1639440, 808509600]\) \(-237947203935023980322/588515625\) \(-1205280000000\) \([]\) \(73920\) \(1.9835\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 7440.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 7440.n do not have complex multiplication.

Modular form 7440.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 3 q^{7} + q^{9} - 3 q^{11} - 2 q^{13} - q^{15} - q^{19} + O(q^{20})\) Copy content Toggle raw display