Properties

Label 7440f
Number of curves $1$
Conductor $7440$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 7440f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7440.s1 7440f1 \([0, 1, 0, -256, 1940]\) \(-909513218/338985\) \(-694241280\) \([]\) \(3136\) \(0.40656\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 7440f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 7440f do not have complex multiplication.

Modular form 7440.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{7} + q^{9} + 3 q^{11} - 6 q^{13} - q^{15} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display