sage:E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 7440f
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7440.s1 |
7440f1 |
[0,1,0,−256,1940] |
−909513218/338985 |
−694241280 |
[] |
3136 |
0.40656
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 7440f1 has
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1−T |
31 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+6T+11T2 |
1.11.g
|
13 |
1+6T+13T2 |
1.13.g
|
17 |
1+4T+17T2 |
1.17.e
|
19 |
1+19T2 |
1.19.a
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7440f do not have complex multiplication.
sage:E.q_eigenform(10)