Properties

Label 7440f
Number of curves 11
Conductor 74407440
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Elliptic curves in class 7440f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7440.s1 7440f1 [0,1,0,256,1940][0, 1, 0, -256, 1940] 909513218/338985-909513218/338985 694241280-694241280 [][] 31363136 0.406560.40656 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 7440f1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551T1 - T
31311+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+6T+11T2 1 + 6 T + 11 T^{2} 1.11.g
1313 1+6T+13T2 1 + 6 T + 13 T^{2} 1.13.g
1717 1+4T+17T2 1 + 4 T + 17 T^{2} 1.17.e
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+6T+23T2 1 + 6 T + 23 T^{2} 1.23.g
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7440f do not have complex multiplication.

Modular form 7440.2.a.f

Copy content sage:E.q_eigenform(10)
 
q+q3q5+q7+q9+3q116q13q154q17q19+O(q20)q + q^{3} - q^{5} + q^{7} + q^{9} + 3 q^{11} - 6 q^{13} - q^{15} - 4 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display