Properties

Label 7440n
Number of curves $2$
Conductor $7440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 7440n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7440.g2 7440n1 \([0, -1, 0, -218360, -39258000]\) \(-281115640967896441/468084326400\) \(-1917273400934400\) \([2]\) \(49920\) \(1.8283\) \(\Gamma_0(N)\)-optimal
7440.g1 7440n2 \([0, -1, 0, -3495160, -2513897360]\) \(1152829477932246539641/3188367360\) \(13059552706560\) \([2]\) \(99840\) \(2.1749\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7440n have rank \(1\).

Complex multiplication

The elliptic curves in class 7440n do not have complex multiplication.

Modular form 7440.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 4 q^{7} + q^{9} - 2 q^{11} + 2 q^{13} - q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.