Properties

Label 7440n
Number of curves 22
Conductor 74407440
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 7440n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7440.g2 7440n1 [0,1,0,218360,39258000][0, -1, 0, -218360, -39258000] 281115640967896441/468084326400-281115640967896441/468084326400 1917273400934400-1917273400934400 [2][2] 4992049920 1.82831.8283 Γ0(N)\Gamma_0(N)-optimal
7440.g1 7440n2 [0,1,0,3495160,2513897360][0, -1, 0, -3495160, -2513897360] 1152829477932246539641/31883673601152829477932246539641/3188367360 1305955270656013059552706560 [2][2] 9984099840 2.17492.1749  

Rank

sage: E.rank()
 

The elliptic curves in class 7440n have rank 11.

Complex multiplication

The elliptic curves in class 7440n do not have complex multiplication.

Modular form 7440.2.a.n

sage: E.q_eigenform(10)
 
qq3+q54q7+q92q11+2q13q15+O(q20)q - q^{3} + q^{5} - 4 q^{7} + q^{9} - 2 q^{11} + 2 q^{13} - q^{15} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.