Properties

Label 7488.bk
Number of curves 44
Conductor 74887488
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Elliptic curves in class 7488.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7488.bk1 7488bt4 [0,0,0,11945964,15892048208][0, 0, 0, -11945964, 15892048208] 986551739719628473/111045168986551739719628473/111045168 2122106207521996821221062075219968 [2][2] 245760245760 2.55712.5571  
7488.bk2 7488bt3 [0,0,0,1347564,204211888][0, 0, 0, -1347564, -204211888] 1416134368422073/7252511554081416134368422073/725251155408 138597654145907294208138597654145907294208 [2][2] 245760245760 2.55712.5571  
7488.bk3 7488bt2 [0,0,0,748524,246985040][0, 0, 0, -748524, 246985040] 242702053576633/2554695936242702053576633/2554695936 488209996144705536488209996144705536 [2,2][2, 2] 122880122880 2.21052.2105  
7488.bk4 7488bt1 [0,0,0,11244,9580880][0, 0, 0, -11244, 9580880] 822656953/207028224-822656953/207028224 39563709722394624-39563709722394624 [2][2] 6144061440 1.86401.8640 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7488.bk have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 12T+5T2 1 - 2 T + 5 T^{2} 1.5.ac
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+8T+19T2 1 + 8 T + 19 T^{2} 1.19.i
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7488.bk do not have complex multiplication.

Modular form 7488.2.a.bk

Copy content sage:E.q_eigenform(10)
 
q+2q54q7+4q11q132q178q19+O(q20)q + 2 q^{5} - 4 q^{7} + 4 q^{11} - q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.