sage:E = EllipticCurve("bk1")
E.isogeny_class()
Elliptic curves in class 7488.bk
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7488.bk1 |
7488bt4 |
[0,0,0,−11945964,15892048208] |
986551739719628473/111045168 |
21221062075219968 |
[2] |
245760 |
2.5571
|
|
7488.bk2 |
7488bt3 |
[0,0,0,−1347564,−204211888] |
1416134368422073/725251155408 |
138597654145907294208 |
[2] |
245760 |
2.5571
|
|
7488.bk3 |
7488bt2 |
[0,0,0,−748524,246985040] |
242702053576633/2554695936 |
488209996144705536 |
[2,2] |
122880 |
2.2105
|
|
7488.bk4 |
7488bt1 |
[0,0,0,−11244,9580880] |
−822656953/207028224 |
−39563709722394624 |
[2] |
61440 |
1.8640
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 7488.bk have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−2T+5T2 |
1.5.ac
|
7 |
1+4T+7T2 |
1.7.e
|
11 |
1−4T+11T2 |
1.11.ae
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+8T+19T2 |
1.19.i
|
23 |
1+23T2 |
1.23.a
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7488.bk do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.