Properties

Label 7488.s
Number of curves $2$
Conductor $7488$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 7488.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7488.s1 7488bi2 \([0, 0, 0, -36396, 2671056]\) \(1033364331/676\) \(3488011517952\) \([2]\) \(18432\) \(1.3464\)  
7488.s2 7488bi1 \([0, 0, 0, -1836, 58320]\) \(-132651/208\) \(-1073234313216\) \([2]\) \(9216\) \(0.99980\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 7488.s have rank \(1\).

Complex multiplication

The elliptic curves in class 7488.s do not have complex multiplication.

Modular form 7488.2.a.s

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} + 2 q^{7} + 4 q^{11} + q^{13} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.