Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 74970b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
74970.h2 | 74970b1 | \([1, -1, 0, -3992235, -3294305659]\) | \(-3038732943445107/267267200000\) | \(-618906717392342400000\) | \([2]\) | \(3456000\) | \(2.7334\) | \(\Gamma_0(N)\)-optimal |
74970.h1 | 74970b2 | \([1, -1, 0, -65167755, -202469563675]\) | \(13217291350697580147/90312500000\) | \(209135325675937500000\) | \([2]\) | \(6912000\) | \(3.0800\) |
Rank
sage: E.rank()
The elliptic curves in class 74970b have rank \(0\).
Complex multiplication
The elliptic curves in class 74970b do not have complex multiplication.Modular form 74970.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.