Properties

Label 75c
Number of curves 22
Conductor 7575
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 75c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
75.a2 75c1 [0,1,1,2,4][0, 1, 1, 2, 4] 20480/24320480/243 6075-6075 [5][5] 66 0.59310-0.59310 Γ0(N)\Gamma_0(N)-optimal
75.a1 75c2 [0,1,1,208,1256][0, 1, 1, -208, -1256] 102400/3-102400/3 29296875-29296875 [][] 3030 0.211620.21162  

Rank

sage: E.rank()
 

The elliptic curves in class 75c have rank 00.

Complex multiplication

The elliptic curves in class 75c do not have complex multiplication.

Modular form 75.2.a.c

sage: E.q_eigenform(10)
 
q2q2+q3+2q42q6+3q7+q9+2q11+2q12q136q144q162q172q185q19+O(q20)q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{6} + 3 q^{7} + q^{9} + 2 q^{11} + 2 q^{12} - q^{13} - 6 q^{14} - 4 q^{16} - 2 q^{17} - 2 q^{18} - 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.