Properties

Label 7600l
Number of curves $3$
Conductor $7600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 7600l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7600.n2 7600l1 \([0, 1, 0, -6208, -190412]\) \(-413493625/152\) \(-9728000000\) \([]\) \(6912\) \(0.88442\) \(\Gamma_0(N)\)-optimal
7600.n3 7600l2 \([0, 1, 0, 3792, -714412]\) \(94196375/3511808\) \(-224755712000000\) \([]\) \(20736\) \(1.4337\)  
7600.n1 7600l3 \([0, 1, 0, -34208, 19577588]\) \(-69173457625/2550136832\) \(-163208757248000000\) \([]\) \(62208\) \(1.9830\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7600l have rank \(0\).

Complex multiplication

The elliptic curves in class 7600l do not have complex multiplication.

Modular form 7600.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} + 6 q^{11} - 5 q^{13} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.