Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 7605j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7605.f1 | 7605j1 | \([1, -1, 1, -1553, -4624]\) | \(117649/65\) | \(228718344465\) | \([2]\) | \(8064\) | \(0.87017\) | \(\Gamma_0(N)\)-optimal |
7605.f2 | 7605j2 | \([1, -1, 1, 6052, -41128]\) | \(6967871/4225\) | \(-14866692390225\) | \([2]\) | \(16128\) | \(1.2167\) |
Rank
sage: E.rank()
The elliptic curves in class 7605j have rank \(0\).
Complex multiplication
The elliptic curves in class 7605j do not have complex multiplication.Modular form 7605.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.