Properties

Label 760a
Number of curves 22
Conductor 760760
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 760a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
760.d2 760a1 [0,1,0,5,0][0, -1, 0, 5, 0] 702464/475702464/475 7600-7600 [2][2] 6464 0.56666-0.56666 Γ0(N)\Gamma_0(N)-optimal
760.d1 760a2 [0,1,0,20,20][0, -1, 0, -20, 20] 3631696/18053631696/1805 462080462080 [2][2] 128128 0.22008-0.22008  

Rank

sage: E.rank()
 

The elliptic curves in class 760a have rank 00.

Complex multiplication

The elliptic curves in class 760a do not have complex multiplication.

Modular form 760.2.a.a

sage: E.q_eigenform(10)
 
q+2q3+q5+4q7+q94q11+2q15+6q17q19+O(q20)q + 2 q^{3} + q^{5} + 4 q^{7} + q^{9} - 4 q^{11} + 2 q^{15} + 6 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.