sage:E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 760a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
760.d2 |
760a1 |
[0,−1,0,5,0] |
702464/475 |
−7600 |
[2] |
64 |
−0.56666
|
Γ0(N)-optimal |
760.d1 |
760a2 |
[0,−1,0,−20,20] |
3631696/1805 |
462080 |
[2] |
128 |
−0.22008
|
|
sage:E.rank()
The elliptic curves in class 760a have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1−T |
19 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
7 |
1+7T2 |
1.7.a
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1+2T+17T2 |
1.17.c
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 760a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.