E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 7616.f
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7616.f1 |
7616e3 |
[0,0,0,−33836,−2394576] |
16342588257633/8185058 |
2145663844352 |
[2] |
12288 |
1.3188
|
|
7616.f2 |
7616e2 |
[0,0,0,−2476,−23760] |
6403769793/2775556 |
727595352064 |
[2,2] |
6144 |
0.97228
|
|
7616.f3 |
7616e1 |
[0,0,0,−1196,15664] |
721734273/13328 |
3493855232 |
[2] |
3072 |
0.62570
|
Γ0(N)-optimal |
7616.f4 |
7616e4 |
[0,0,0,8404,−176080] |
250404380127/196003234 |
−51381071773696 |
[4] |
12288 |
1.3188
|
|
The elliptic curves in class 7616.f have
rank 1.
The elliptic curves in class 7616.f do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.