Properties

Label 7623p
Number of curves $6$
Conductor $7623$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 7623p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7623.g6 7623p1 \([1, -1, 1, 1066, -3220]\) \(103823/63\) \(-81362482047\) \([2]\) \(5120\) \(0.78274\) \(\Gamma_0(N)\)-optimal
7623.g5 7623p2 \([1, -1, 1, -4379, -22822]\) \(7189057/3969\) \(5125836368961\) \([2, 2]\) \(10240\) \(1.1293\)  
7623.g2 7623p3 \([1, -1, 1, -53384, -4727302]\) \(13027640977/21609\) \(27907331342121\) \([2, 2]\) \(20480\) \(1.4759\)  
7623.g3 7623p4 \([1, -1, 1, -42494, 3361790]\) \(6570725617/45927\) \(59313249412263\) \([2]\) \(20480\) \(1.4759\)  
7623.g1 7623p5 \([1, -1, 1, -853799, -303442180]\) \(53297461115137/147\) \(189845791443\) \([2]\) \(40960\) \(1.8225\)  
7623.g4 7623p6 \([1, -1, 1, -37049, -7687204]\) \(-4354703137/17294403\) \(-22335167517477507\) \([2]\) \(40960\) \(1.8225\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7623p have rank \(0\).

Complex multiplication

The elliptic curves in class 7623p do not have complex multiplication.

Modular form 7623.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 2 q^{5} + q^{7} + 3 q^{8} - 2 q^{10} + 2 q^{13} - q^{14} - q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.