sage:E = EllipticCurve("bk1")
E.isogeny_class()
Elliptic curves in class 7650.bk
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7650.bk1 |
7650cp2 |
[1,−1,1,−366305,−1824303] |
19088138515945/11040808032 |
3144042599737500000 |
[] |
144000 |
2.2388
|
|
7650.bk2 |
7650cp1 |
[1,−1,1,−248630,47779647] |
3730569358698025/102 |
46473750 |
[] |
28800 |
1.4341
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 7650.bk have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1 |
5 | 1 |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+3T+7T2 |
1.7.d
|
11 |
1−3T+11T2 |
1.11.ad
|
13 |
1+4T+13T2 |
1.13.e
|
19 |
1+5T+19T2 |
1.19.f
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7650.bk do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1551)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.